Modeling and Pareto based multi-objective optimization of wavy fin-and-elliptical tube heat exchangers using CFD and NSGA-II algorithm

被引:102
|
作者
Damavandi, Mohammad Darvish [1 ]
Forouzanmehr, Mostafa [1 ]
Safikhani, Hamed [2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Mech Engn, Tehran, Iran
[2] Arak Univ, Fac Engn, Dept Mech Engn, Arak 3815688349, Iran
关键词
Multi objective optimization; Wavy fin; Elliptical tube; GMDH; NSGA-II; AIR-SIDE PERFORMANCE; FRICTION CHARACTERISTICS; TRANSFER COEFFICIENT; SURFACE; LOUVER; FLOW;
D O I
10.1016/j.applthermaleng.2016.09.120
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, a multi-objective optimization (MOO) of wavy fin-and-elliptical tube heat exchangers has been performed by using Computational Fluid Dynamics (CFD), Artificial Neural Network (ANN) of Group Method of Data Handling (GMDH) type, and Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This multi-objective optimization is aimed at achieving maximum heat transfer and minimum pressure drop. For this purpose, the considered objective functions, Colbum factor (j) and friction factor (f) are optimized with regards to the design variables (four variables). The CFD results are validated by means of experimental findings. Polynomials of the GMDH type neural network are formed based on the CFD results. These polynomials relate the objective functions to the design variables. Ultimately, the NSGA-II algorithm obtains the Pareto optimal points by using the input data from the neural network. From among the optimal points, several points with unique features are introduced and explained. The investigation of optimal points indicates that with a slight reduction in heat transfer, pressure drop can be reduced considerably. By combining and simultaneously using the CFD, neural network and NSGA-II optimization algorithm, very useful and valuable results are obtained; which otherwise couldn't be achieved without the mutual use of these techniques. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 50 条
  • [31] Multi-objective optimization of integrated energy system based on improved NSGA-II algorithm
    Mei, Rui
    Wu, Tao
    Geng, Deji
    Zhang, Minzi
    Liu, Yanan
    Qian, Xusheng
    Sun, Yonghui
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1721 - 1726
  • [32] Multi-Objective Optimization of Construction Project Management Based on NSGA-II Algorithm Improvement
    Yang, Yong
    Men, Jinrui
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (01) : 432 - 444
  • [33] Multi-objective process parameter optimization for winding process based on NSGA-II algorithm
    Han, Yuze
    Liu, Yanpeng
    Ren, Zhongjie
    Ren, Mingfa
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (10): : 5622 - 5633
  • [34] A Memory-Based NSGA-II Algorithm for Dynamic Multi-objective Optimization Problems
    Sahmoud, Shaaban
    Topcuoglu, Haluk Rahmi
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2016, PT II, 2016, 9598 : 296 - 310
  • [35] Multi-objective Optimization Design of an AFFMPM Machine based on SVM and NSGA-II Algorithm
    Wang, Shuai
    Lin, Mingyao
    Chan, C. C.
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [36] Multi-objective optimization using bat algorithm for shell and tube heat exchangers
    Tharakeshwar, T. K.
    Seetharamu, K. N.
    Prasad, B. Durga
    APPLIED THERMAL ENGINEERING, 2017, 110 : 1029 - 1038
  • [37] Multi-objective optimization of hydrothermal performance of a porous minichannel heat sink using RSM and NSGA-II algorithm
    Kumar, Rajesh
    Zunaid, Mohammad
    Mishra, Radhey Shyam
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 110
  • [38] Thermo-entropic analysis and multi-objective optimization of wavy lobed heat exchanger tube using DOE, RSM, and NSGA II algorithm
    Hadibafekr, Sajed
    Mirzaee, Iraj
    Khalilian, Morteza
    Shirvani, Hassan
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 184
  • [39] Multi-objective optimization of power system reconstruction based on NSGA-II
    Wang, Hongtao
    Liu, Yutian
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2009, 33 (23): : 14 - 18
  • [40] Multi-Objective Robust Optimization Based on NSGA-II and Degree of Robustness
    Qiang, Jie
    Qi, Rongbin
    Qian, Feng
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 4859 - 4864