共 50 条
Detecting and correcting systematic variation in large-scale RNA sequencing data
被引:121
|作者:
Li, Sheng
[1
,2
]
Labaj, Pawel P.
[3
]
Zumbo, Paul
[1
,2
]
Sykacek, Peter
[3
]
Shi, Wei
[4
]
Shi, Leming
[5
,6
,7
]
Phan, John
[8
]
Wu, Po-Yen
[8
]
Wang, May
[8
]
Wang, Charles
[9
,10
]
Thierry-Mieg, Danielle
[11
]
Thierry-Mieg, Jean
[11
]
Kreil, David P.
[3
,12
]
Mason, Christopher E.
[1
,2
,13
]
机构:
[1] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA
[2] Weill Cornell Med Coll, HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsau, New York, NY USA
[3] Boku Univ Vienna, Bioinformat Res Grp, Vienna, Austria
[4] WEHI, Dept Bioinformat, Melbourne, Vic, Australia
[5] Fudan Univ, State Key Lab Genet Engn, Sch Life Sci, Shanghai 200433, Peoples R China
[6] Fudan Univ, MOE Key Lab Contemporary Anthropol, Sch Life Sci, Shanghai 200433, Peoples R China
[7] Fudan Univ, Sch Pharm, Shanghai 200433, Peoples R China
[8] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[9] Loma Linda Univ, Ctr Genom, Loma Linda, CA 92350 USA
[10] Loma Linda Univ, Sch Med, Div Microbiol & Mol Genet, Loma Linda, CA USA
[11] Natl Ctr Biotechnol Informat, Bethesda, MD USA
[12] Univ Warwick, Coventry CV4 7AL, W Midlands, England
[13] Feil Family Brain & Mind Res Inst, New York, NY USA
基金:
美国国家卫生研究院;
关键词:
QUALITY-CONTROL;
GENE-EXPRESSION;
DIFFERENTIAL EXPRESSION;
UNWANTED VARIATION;
MESSENGER-RNA;
SEQ;
NORMALIZATION;
TRANSCRIPTS;
ALGORITHMS;
PACKAGE;
D O I:
10.1038/nbt.3000
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
High-throughput RNA sequencing (RNA-seq) enables comprehensive scans of entire transcriptomes, but best practices for analyzing RNA-seq data have not been fully defined, particularly for data collected with multiple sequencing platforms or at multiple sites. Here we used standardized RNA samples with built-in controls to examine sources of error in large-scale RNA-seq studies and their impact on the detection of differentially expressed genes (DEGs). Analysis of variations in guanine-cytosine content, gene coverage, sequencing error rate and insert size allowed identification of decreased reproducibility across sites. Moreover, commonly used methods for normalization (cqn, EDASeq, RUV2, sva, PEER) varied in their ability to remove these systematic biases, depending on sample complexity and initial data quality. Normalization methods that combine data from genes across sites are strongly recommended to identify and remove site-specific effects and can substantially improve RNA-seq studies.
引用
收藏
页码:888 / 895
页数:8
相关论文