Manifold de Bruijn Graphs

被引:0
|
作者
Lin, Yu [1 ]
Pevzner, Pavel A. [1 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
来源
ALGORITHMS IN BIOINFORMATICS | 2014年 / 8701卷
关键词
NOVO ASSEMBLER; SINGLE-CELL; GENOMES; IDBA;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genome assembly is usually abstracted as the problem of reconstructing a string from a set of its k-mers. This abstraction naturally leads to the classical de Bruijn graph approach-the key algorithmic technique in genome assembly. While each vertex in this approach is labeled by a string of the fixed length k, the recent genome assembly studies suggest that it would be useful to generalize the notion of the de Bruijn graph to the case when vertices are labeled by strings of variable lengths. Ideally, we would like to choose larger values of k in high-coverage regions to reduce repeat collapsing and smaller values of k in the low-coverage regions to avoid fragmentation of the de Bruijn graph. To address this challenge, the iterative de Bruijn graph assembly (IDBA) approach allows one to increase k at each iterations of the graph construction. We introduce the Manifold de Bruijn (M-Bruijn) graph (that generalizes the concept of the de Bruijn graph) and show that it can provide benefits similar to the IDBA approach in a single iteration that considers the entire range of possible k-mer sizes rather than varies k from one iteration to another.
引用
收藏
页码:296 / 310
页数:15
相关论文
共 50 条
  • [41] 2-Diameter of de Bruijn graphs
    Li, Q
    Sotteau, D
    Xu, JM
    NETWORKS, 1996, 28 (01) : 7 - 14
  • [42] Variable-Order de Bruijn Graphs
    Boucher, Christina
    Bowe, Alex
    Gagie, Travis
    Puglisi, Simon J.
    Sadakane, Kunihiko
    2015 DATA COMPRESSION CONFERENCE (DCC), 2015, : 383 - 392
  • [43] Aligning optical maps to de Bruijn graphs
    Mukherjee, Kingshuk
    Alipanahi, Bahar
    Kahveci, Tamer
    Salmela, Leena
    Boucher, Christina
    BIOINFORMATICS, 2019, 35 (18) : 3250 - 3256
  • [44] DNA Assembly with de Bruijn Graphs on FPGA
    Poirier, Carl
    Gosselin, Benoit
    Fortier, Paul
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 6489 - 6492
  • [45] Compression algorithm for colored de Bruijn graphs
    Rahman, Amatur
    Dufresne, Yoann
    Medvedev, Paul
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2024, 19 (01)
  • [46] Identifying codes on directed de Bruijn graphs
    Boutin, Debra
    Goliber, Victoria Horan
    Pelto, Mikko
    DISCRETE APPLIED MATHEMATICS, 2019, 262 : 29 - 41
  • [47] BOUNDS ON FEEDBACK NUMBERS OF DE BRUIJN GRAPHS
    Xu, Xirong
    Xu, Jun-Ming
    Cao, Yongchang
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1101 - 1113
  • [48] Lossless indexing with counting de Bruijn graphs
    Karasikov, Mikhail
    Mustafa, Harun
    Ratsch, Gunnar
    Kahles, Andre
    GENOME RESEARCH, 2022, 32 (09) : 1754 - 1764
  • [49] EMBEDDINGS OF HYPERCUBES AND GRIDS INTO DE BRUIJN GRAPHS
    HEYDEMANN, MC
    OPATRNY, J
    SOTTEAU, D
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1994, 23 (01) : 104 - 111
  • [50] De Bruijn Sequences, Adjacency Graphs, and Cyclotomy
    Li, Ming
    Lin, Dongdai
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2941 - 2952