BOUNDS ON FEEDBACK NUMBERS OF DE BRUIJN GRAPHS

被引:9
|
作者
Xu, Xirong [1 ,2 ]
Xu, Jun-Ming [2 ]
Cao, Yongchang [2 ]
机构
[1] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 03期
关键词
Graph theory; Feedback vertex set; Feedback number; de Bruijn graphs; Cycles; Scyclic subgraph; Networks; VERTEX SET PROBLEM;
D O I
10.11650/twjm/1500406287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The feedback number of a graph G is the minimum number of vertices whose removal from G results in an acyclic subgraph. We use f(d, n) to denote the feedback number of the de Bruijn graph UB(d, n). R. Kralovic and P. Ruzicka [Minimum feedback vertex sets in shuffle-based interconnection networks. Information Processing Letters, 86 (4) (2003), 191-196] proved that f (2, n) = [2(n)-2/3]. This paper gives the upper bound on f(d, n) for d >= 3, that is, f (d, n) <= d(n) (1 - (d/1+d)(d-1)) + ((n+d-2)(d-2)).
引用
收藏
页码:1101 / 1113
页数:13
相关论文
共 50 条
  • [1] Feedback numbers of de Bruijn digraphs
    Xu, Xirong
    Cao, Yongchang
    Xu, Jun-Ming
    Wu, Yezhou
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (02) : 716 - 723
  • [2] Improved lower bounds for embedding hypercubes on de Bruijn graphs
    Fidanova, S
    Trystram, DR
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2004, 64 (03) : 327 - 329
  • [3] On the bounds of feedback numbers of (n, k)-star graphs
    Wang, Jian
    Xu, Xirong
    Zhu, Dejun
    Gao, Liqing
    Xu, Jun-Ming
    INFORMATION PROCESSING LETTERS, 2012, 112 (12) : 473 - 478
  • [4] On (d, 2)-dominating numbers of binary undirected de Bruijn graphs
    Lu, CH
    Xu, JM
    Zhang, KM
    DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) : 137 - 145
  • [5] De Bruijn sequences and De Bruijn graphs for a general language
    Moreno, E
    INFORMATION PROCESSING LETTERS, 2005, 96 (06) : 214 - 219
  • [6] On hypercubes in de Bruijn graphs
    Andreae, Thomas
    Hintz, Martin
    Parallel Processing Letters, 1998, 8 (02): : 259 - 268
  • [7] Generalized de Bruijn graphs
    Malyshev, FM
    Tarakanov, VE
    MATHEMATICAL NOTES, 1997, 62 (3-4) : 449 - 456
  • [8] Generalized de Bruijn graphs
    F. M. Malyshev
    V. E. Tarakanov
    Mathematical Notes, 1997, 62 : 449 - 456
  • [9] Enhanced de Bruijn graphs
    Guzide, O
    Wagh, MD
    AMCS '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON ALGORITHMIC MATHEMATICS AND COMPUTER SCIENCE, 2005, : 23 - 28
  • [10] On the Representation of de Bruijn Graphs
    Chikhi, Rayan
    Limasset, Antoine
    Jackman, Shaun
    Simpson, Jared T.
    Medvedev, Paul
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB2014, 2014, 8394 : 35 - 55