BOUNDS ON FEEDBACK NUMBERS OF DE BRUIJN GRAPHS

被引:9
|
作者
Xu, Xirong [1 ,2 ]
Xu, Jun-Ming [2 ]
Cao, Yongchang [2 ]
机构
[1] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 03期
关键词
Graph theory; Feedback vertex set; Feedback number; de Bruijn graphs; Cycles; Scyclic subgraph; Networks; VERTEX SET PROBLEM;
D O I
10.11650/twjm/1500406287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The feedback number of a graph G is the minimum number of vertices whose removal from G results in an acyclic subgraph. We use f(d, n) to denote the feedback number of the de Bruijn graph UB(d, n). R. Kralovic and P. Ruzicka [Minimum feedback vertex sets in shuffle-based interconnection networks. Information Processing Letters, 86 (4) (2003), 191-196] proved that f (2, n) = [2(n)-2/3]. This paper gives the upper bound on f(d, n) for d >= 3, that is, f (d, n) <= d(n) (1 - (d/1+d)(d-1)) + ((n+d-2)(d-2)).
引用
收藏
页码:1101 / 1113
页数:13
相关论文
共 50 条
  • [31] Spanners of de Bruijn and Kautz graphs
    Harbane, R
    Padro, C
    INFORMATION PROCESSING LETTERS, 1997, 62 (05) : 231 - 236
  • [32] Read mapping on de Bruijn graphs
    Limasset, Antoine
    Cazaux, Bastien
    Rivals, Eric
    Peterlongo, Pierre
    BMC BIOINFORMATICS, 2016, 17
  • [33] Wide diameters of de Bruijn graphs
    Kuo, Jyhmin
    Fu, Hung-Lin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (2-3) : 143 - 152
  • [34] The spectrum of de Bruijn and Kautz graphs
    Delorme, C
    Tillich, JP
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (03) : 307 - 319
  • [35] Edge minimization in de Bruijn graphs
    Baier, Uwe
    Buechler, Thomas
    Ohlebusch, Enno
    Weber, Pascal
    2020 DATA COMPRESSION CONFERENCE (DCC 2020), 2020, : 223 - 232
  • [36] Fully Dynamic de Bruijn Graphs
    Belazzougui, Djamal
    Gagie, Travis
    Makinen, Veli
    Previtali, Marco
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2016, 2016, 9954 : 145 - 152
  • [37] Read mapping on de Bruijn graphs
    Antoine Limasset
    Bastien Cazaux
    Eric Rivals
    Pierre Peterlongo
    BMC Bioinformatics, 17
  • [38] ASYMPTOTICALLY-TIGHT BOUNDS ON THE NUMBER OF CYCLES IN GENERALIZED DE BRUIJN-GOOD GRAPHS
    MAURER, UM
    DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 421 - 436
  • [39] Embedding Cartesian products of graphs into de Bruijn graphs
    Andreae, T
    Nolle, M
    Schreihber, G
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1997, 46 (02) : 194 - 200
  • [40] Applications of de Bruijn graphs in microbiome research
    Dufault-Thompson, Keith
    Jiang, Xiaofang
    IMETA, 2022, 1 (01):