Edge minimization in de Bruijn graphs

被引:0
|
作者
Baier, Uwe [1 ]
Buechler, Thomas [1 ]
Ohlebusch, Enno [1 ]
Weber, Pascal [1 ]
机构
[1] Ulm Univ, Inst Theoret Comp Sci, D-89069 Ulm, Germany
关键词
PAN-GENOME ANALYSIS;
D O I
10.1109/DCC47342.2020.00030
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces the de Bruijn graph edge minimization problem, which is related to the compression of de Bruijn graphs: find the order-k de Bruijn graph with minimum edge count among all orders. We describe an efficient algorithm that solves this problem. Since the edge minimization problem is connected to the BWT compression technique called "tunneling", the paper also describes a way to minimize the length of a tunneled BWT in such a way that useful properties for sequence analysis are preserved. Although being a restriction, this is significant progress towards a solution to the open problem of finding optimal disjoint blocks that minimize space, as stated in Alanko et al. (DCC 2019).
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [1] Edge minimization in de Bruijn graphs
    Baier, Uwe
    Buechler, Thomas
    Ohlebusch, Enno
    Weber, Pascal
    [J]. INFORMATION AND COMPUTATION, 2022, 285
  • [2] The restricted edge-connectivity of de Bruijn undirected graphs
    Xu, Jun-Ming
    Lu, Min
    Fan, Ying-Mei
    [J]. ARS COMBINATORIA, 2007, 83 : 321 - 333
  • [3] SUPER EDGE-CONNECTIVITY OF DE BRUIJN AND KAUTZ UNDIRECTED GRAPHS
    Xu Junming * Fan Yingmei ** 1 Dept. of Math.
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2004, (04) : 449 - 454
  • [4] De Bruijn sequences and De Bruijn graphs for a general language
    Moreno, E
    [J]. INFORMATION PROCESSING LETTERS, 2005, 96 (06) : 214 - 219
  • [5] Super edge-connectivity of de bruijn and kautz undirected graphs
    Xu J.
    Fan Y.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2004, 19 (4) : 449 - 454
  • [6] Generalized de Bruijn graphs
    Malyshev, FM
    Tarakanov, VE
    [J]. MATHEMATICAL NOTES, 1997, 62 (3-4) : 449 - 456
  • [7] On hypercubes in de Bruijn graphs
    Andreae, Thomas
    Hintz, Martin
    [J]. Parallel Processing Letters, 1998, 8 (02): : 259 - 268
  • [8] Generalized de Bruijn graphs
    F. M. Malyshev
    V. E. Tarakanov
    [J]. Mathematical Notes, 1997, 62 : 449 - 456
  • [9] Enhanced de Bruijn graphs
    Guzide, O
    Wagh, MD
    [J]. AMCS '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON ALGORITHMIC MATHEMATICS AND COMPUTER SCIENCE, 2005, : 23 - 28
  • [10] On the Representation of de Bruijn Graphs
    Chikhi, Rayan
    Limasset, Antoine
    Jackman, Shaun
    Simpson, Jared T.
    Medvedev, Paul
    [J]. RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB2014, 2014, 8394 : 35 - 55