A new edge-grouping algorithm for multiple complex objects localization

被引:0
|
作者
Motai, Y [1 ]
机构
[1] Univ Vermont, Coll Engn & Math, Dept Elect & Comp Engn, Intelligent Media Lab, Burlington, VT 05405 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new algorithm that provides an efficient localization method of elliptic industrial objects. Our proposed feature extraction inherits edge grouping approaches. But instead of utilizing edge linkage to restore incomplete contours, we introduce criteria of feature's parameters and optimize the criteria using an extended Kalman filter. Through a new parameter estimation under a proper ellipse representation, our system successfully generates ellipse hypotheses by grouping the fragmental edges in the scene. An important advantage of using our Kalman filter approach is that a desired feature can be robustly extracted regardless of ill-condition of partial edges and outlier noises. The experiment results demonstrate a robust localization performance.
引用
收藏
页码:1194 / 1203
页数:10
相关论文
共 50 条
  • [31] A Dedicated Genetic Algorithm for Localization of Moving Magnetic Objects
    Alimi, Roger
    Weiss, Eyal
    Ram-Cohen, Tsuriel
    Geron, Nir
    Yogev, Idan
    SENSORS, 2015, 15 (09) : 23788 - 23804
  • [32] Cell-competition algorithm: A new segmentation algorithm for multiple objects with irregular boundaries in ultrasound images
    Chen, CM
    Chou, YH
    Chen, CSK
    Cheng, JZ
    Ou, YF
    Yeh, FC
    Chen, KW
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2005, 31 (12): : 1647 - 1664
  • [33] Probabilistic sensor models for multiple objects localization problem
    Shibata, Junichi
    Yairi, Takehisa
    Kanazaki, Hirofumi
    Shirasaka, Youhei
    Machida, Kazuo
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 4319 - +
  • [34] LOCALIZATION AND TRACKING OF MULTIPLE UNKNOWN OBJECTS IN REAL ENVIRONMENTS
    FORESTI, GL
    REGAZZONI, CS
    ELECTRONICS LETTERS, 1995, 31 (05) : 355 - 356
  • [35] A multiple objective grouping genetic algorithm for assembly line design
    Brahim Rekiek
    Pierre De Lit
    Fabrice Pellichero
    Thomas L'Eglise
    Patrick Fouda
    Emanuel Falkenauer
    Alain Delchambre
    Journal of Intelligent Manufacturing, 2001, 12 : 467 - 485
  • [36] A multiple objective grouping genetic algorithm for assembly line design
    Rekiek, B
    De Lit, P
    Pellichero, F
    L'Eglise, T
    Fouda, P
    Falkenauer, E
    Delchambre, A
    JOURNAL OF INTELLIGENT MANUFACTURING, 2001, 12 (5-6) : 467 - 485
  • [37] A heuristic algorithm for the capacitated multiple supplier inventory grouping problem
    Syam, SS
    Shetty, B
    DECISION SCIENCES, 1996, 27 (04) : 711 - 733
  • [38] BRANCHING ALGORITHM FOR DISCRIMINATING AND TRACKING MULTIPLE OBJECTS
    SMITH, P
    BUECHLER, G
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (01) : 101 - 104
  • [39] Tracking multiple objects using the Viterbi algorithm
    Kraeussling, Andreas
    Schneider, Frank E.
    Sehestedt, Stephan
    ICINCO 2006: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS: ROBOTICS AND AUTOMATION, 2006, : 18 - 25
  • [40] A SNAKE ALGORITHM FOR AUTOMATICALLY TRACKING MULTIPLE OBJECTS
    Fang, Hua
    Kim, Shin-Hyoung
    Jang, JongWhan
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 469 - 472