A new edge-grouping algorithm for multiple complex objects localization

被引:0
|
作者
Motai, Y [1 ]
机构
[1] Univ Vermont, Coll Engn & Math, Dept Elect & Comp Engn, Intelligent Media Lab, Burlington, VT 05405 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new algorithm that provides an efficient localization method of elliptic industrial objects. Our proposed feature extraction inherits edge grouping approaches. But instead of utilizing edge linkage to restore incomplete contours, we introduce criteria of feature's parameters and optimize the criteria using an extended Kalman filter. Through a new parameter estimation under a proper ellipse representation, our system successfully generates ellipse hypotheses by grouping the fragmental edges in the scene. An important advantage of using our Kalman filter approach is that a desired feature can be robustly extracted regardless of ill-condition of partial edges and outlier noises. The experiment results demonstrate a robust localization performance.
引用
收藏
页码:1194 / 1203
页数:10
相关论文
共 50 条
  • [21] Grouping Method based on Feature Matching for Tracking and Recognition of Complex Objects
    Nagaoka, Naomi
    Okazaki, Keita
    Sugahara, Tatsuya
    Koide, Tetsushi
    Mattausch, Hans Juergen
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS 2008), 2008, : 230 - 233
  • [22] Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data
    Mueller, Emmanuel
    Guennemann, Stephan
    Faerber, Ines
    Seidl, Thomas
    2012 IEEE 28TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2012, : 1207 - 1210
  • [23] Multiple Underwater Objects Localization With Magnetic Gradiometry
    Hu, Shuanggui
    Tang, Jingtian
    Ren, Zhengyong
    Chen, Chaojian
    Zhou, Cong
    Xiao, Xiao
    Zhao, Tingting
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (02) : 296 - 300
  • [24] A grouping genetic algorithm for the multiple traveling salesperson problem
    Brown, Evelyn C.
    Ragsdale, Cliff T.
    Carter, Arthur E.
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2007, 6 (02) : 333 - 347
  • [25] PAINTING MULTIPLE VIEWS OF COMPLEX OBJECTS
    MCDONALD, JA
    STUETZLE, W
    BUJA, A
    SIGPLAN NOTICES, 1990, 25 (10): : 245 - 257
  • [26] Segmentation algorithm for objects with very low edge contrast
    McCarthy, S
    Miller, TC
    Bankman, IN
    INTELLIGENT ROBOTS AND COMPUTER VISION XXII: ALGORITHMS, TECHNIQUES, AND ACTIVE VISION, 2004, 5608 : 162 - 168
  • [27] EDGE CONTOURING OF COMPLEX OBJECTS WITH A COMPLEX HIGH-PASS FILTER
    KESSLER, S
    HILD, R
    OPTICA ACTA, 1984, 31 (03): : 295 - 300
  • [28] Subpixel Edge Localization Based on the Bresenham Algorithm
    Sun Weifang
    Chen Binqiang
    Luo Qi
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INDUSTRIAL INFORMATICS, 2015, 31 : 1 - 5
  • [29] A new grouping genetic algorithm for clustering problems
    Agustin-Blas, L. E.
    Salcedo-Sanz, S.
    Jimenez-Fernandez, S.
    Carro-Calvo, L.
    Del Ser, J.
    Portilla-Figueras, J. A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 9695 - 9703
  • [30] A BAYESIAN MULTIPLE-HYPOTHESIS APPROACH TO EDGE GROUPING AND CONTOUR SEGMENTATION
    COX, IJ
    REHG, JM
    HINGORANI, S
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1993, 11 (01) : 5 - 24