UNBIASED MONTE CARLO COMPUTATION OF SMOOTH FUNCTIONS OF EXPECTATIONS VIA TAYLOR EXPANSIONS

被引:0
|
作者
Blanchet, Jose H. [1 ,2 ]
Chen, Nan [3 ]
Glynn, Peter W. [4 ]
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, 500 W 120th St, New York, NY 10027 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
[4] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many Monte Carlo computations involve computing quantities that can be expressed as g(EX), where g is nonlinear and smooth, and X is an easily simulatable random variable. The nonlinearity of g makes the conventional Monte Carlo estimator for such quantities biased. In this paper, we show how such quantities can be estimated without bias. However, our approach typically increases the variance. Thus, our approach is primarily of theoretical interest in the above setting. However, our method can also be applied to the computation of the inner expectation associated with Eg(EX|Z)), and in this setting, the application of this method can have a significant positive effect on improving the rate of convergence relative to conventional "nested schemes" for carrying out such calculations.
引用
收藏
页码:360 / 367
页数:8
相关论文
共 50 条
  • [21] Numerical integration of detector response functions via Monte Carlo simulations
    Kelly, K. J.
    O'Donnell, J. M.
    Gomez, J. A.
    Taddeucci, T. N.
    Devlin, M.
    Haight, R. C.
    White, M. C.
    Mosby, S. M.
    Neudecker, D.
    Buckner, M. Q.
    Wu, C. Y.
    Lee, H. Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 866 : 182 - 189
  • [22] Computation of interfacial properties via grand canonical transition matrix Monte Carlo simulation
    Grzelak, Eric M.
    Errington, Jeffrey R.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (01):
  • [23] Direct computation of the twist elastic coefficient of a nematic liquid crystal via Monte Carlo simulations
    Steuer, H
    Hess, S
    PHYSICAL REVIEW LETTERS, 2005, 94 (02)
  • [24] COSMOABC: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation
    Ishida, E. E. O.
    Vitenti, S. D. P.
    Penna-Lima, M.
    Cisewski, J.
    de Souza, R. S.
    Trindade, A. M. M.
    Cameron, E.
    Busti, V. C.
    ASTRONOMY AND COMPUTING, 2015, 13 : 1 - 11
  • [25] A simple methodology for analyzing association effects on response functions via Monte Carlo simulations
    Gomez-Alvarez, P.
    Dopazo-Paz, A.
    Romani, L.
    Gonzalez-Salgado, D.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (01):
  • [26] Beyond histograms: Efficiently estimating radial distribution functions via spectral Monte Carlo
    Patrone, Paul N.
    Rosch, Thomas W.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (09):
  • [27] Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order
    Dick, Josef
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1519 - 1553
  • [28] Network Optimization via Smooth Exact Penalty Functions Enabled by Distributed Gradient Computation
    Srivastava, Priyank
    Cortes, Jorge
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (03): : 1430 - 1441
  • [29] Computation of Asymptotic Expansions of Turning Point Problems via Cauchy’s Integral Formula: Bessel Functions
    T. M. Dunster
    A. Gil
    J. Segura
    Constructive Approximation, 2017, 46 : 645 - 675
  • [30] Computation of Asymptotic Expansions of Turning Point Problems via Cauchy's Integral Formula: Bessel Functions
    Dunster, T. M.
    Gil, A.
    Segura, J.
    CONSTRUCTIVE APPROXIMATION, 2017, 46 (03) : 645 - 675