Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order

被引:87
|
作者
Dick, Josef [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
numerical integration; quasi-Monte Carlo; digital nets and sequences; Walsh; functions;
D O I
10.1137/060666639
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a Walsh space which contains all functions whose partial mixed derivatives up to order delta >= 1 exist and have finite variation. In particular, for a suitable choice of parameters, this implies that certain Sobolev spaces are contained in these Walsh spaces. For this Walsh space we then show that quasi-Monte Carlo rules based on digital (t, alpha, s)-sequences achieve the optimal rate of convergence of the worst-case error for numerical integration. This rate of convergence is also optimal for the subspace of smooth functions. Explicit constructions of digital (t, alpha,s)-sequences are given, hence providing explicit quasi-Monte Carlo rules which achieve the optimal rate of convergence of the integration error for arbitrarily smooth functions.
引用
收藏
页码:1519 / 1553
页数:35
相关论文
共 50 条
  • [1] AN EXPLICIT CONSTRUCTION OF OPTIMAL ORDER QUASI-MONTE CARLO RULES FOR SMOOTH INTEGRANDS
    Goda, Takashi
    Suzuki, Kosuke
    Yoshiki, Takehito
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2664 - 2683
  • [2] Quasi-Monte Carlo quadratures for multivariate smooth functions
    Maire, S
    De Luigi, C
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (02) : 146 - 162
  • [3] Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness
    Goda, Takashi
    Suzuki, Kosuke
    Yoshiki, Takehito
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 505 - 518
  • [4] On Quasi-Monte Carlo Rules Achieving Higher Order Convergence
    Dick, Josef
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 73 - 96
  • [5] Construction of Quasi-Monte Carlo Rules for Multivariate Integration in Spaces of Permutation-Invariant Functions
    Dirk Nuyens
    Gowri Suryanarayana
    Markus Weimar
    Constructive Approximation, 2017, 45 : 311 - 344
  • [6] Construction of Quasi-Monte Carlo Rules for Multivariate Integration in Spaces of Permutation-Invariant Functions
    Nuyens, Dirk
    Suryanarayana, Gowri
    Weimar, Markus
    CONSTRUCTIVE APPROXIMATION, 2017, 45 (02) : 311 - 344
  • [7] A note on concatenation of quasi-Monte Carlo and plain Monte Carlo rules in high dimensions
    Goda, Takashi
    JOURNAL OF COMPLEXITY, 2022, 72
  • [8] A new quasi-Monte Carlo algorithm for numerical integration of smooth functions
    Atanassov, EI
    Dimov, IT
    Durchova, MK
    LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 128 - 135
  • [9] Approximation of Quasi-Monte Carlo worst case error in weighted spaces of infinitely times smooth functions
    Matsumoto, Makoto
    Ohori, Ryuichi
    Yoshiki, Takehito
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 155 - 164
  • [10] Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions
    Aicke Hinrichs
    Lev Markhasin
    Jens Oettershagen
    Tino Ullrich
    Numerische Mathematik, 2016, 134 : 163 - 196