Combining Edge Weight and Vertex Weight for Minimum Vertex Cover Problem

被引:0
|
作者
Fang, Zhiwen [1 ]
Chu, Yang [1 ]
Qiao, Kan [2 ]
Feng, Xu [1 ]
Xu, Ke [1 ]
机构
[1] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[2] IIT, Dept Comp Sci, Chicago, IL 60616 USA
来源
基金
高等学校博士学科点专项科研基金;
关键词
RANDOM CONSTRAINT SATISFACTION; LOCAL SEARCH; MAXIMUM CLIQUE; BOUND ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Minimum Vertex Cover (MVC) problem is an important NP-hard combinatorial optimization problem. Constraint weighting is an effective technique in stochastic local search algorithms for the MVC problem. The edge weight and the vertex weight have been used separately by different algorithms. We present a new local search algorithm, namely VEWLS, which integrates the edge weighting scheme with the vertex weighting scheme. To the best of our knowledge, it is the first time to combine two weighting schemes for the MVC problem. Experiments over both the DIMACS benchmark and the BHOSLIB benchmark show that VEWLS outperforms NuMVC, the state-of-the-art local search algorithm for MVC, on 73% and 68% of the instances, respectively.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 50 条
  • [41] An effective algorithm for minimum weighted vertex cover problem
    Balaji, S.
    Swaminathan, V.
    Kannan, K.
    International Journal of Computational and Mathematical Sciences, 2010, 4 (01): : 34 - 38
  • [42] An effective algorithm for minimum weighted vertex cover problem
    Balaji, S.
    Swaminathan, V.
    Kannan, K.
    World Academy of Science, Engineering and Technology, 2010, 67 : 315 - 319
  • [43] An effective algorithm for minimum weighted vertex cover problem
    Balaji, S.
    Swaminathan, V.
    Kannan, K.
    World Academy of Science, Engineering and Technology, 2010, 43 : 315 - 319
  • [44] A New Solver for the Minimum Weighted Vertex Cover Problem
    Xu, Hong
    Kumar, T. K. Satish
    Koenig, Sven
    INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING, CPAIOR 2016, 2016, 9676 : 392 - 405
  • [45] An Hopfield network learning for minimum vertex cover problem
    Chen, XM
    Tang, Z
    Xu, XS
    Li, SS
    Xia, GP
    Zong, ZL
    Wang, JH
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 1150 - 1155
  • [46] A PARALLEL ALGORITHM FOR THE MINIMUM WEIGHTED VERTEX COVER PROBLEM
    LIKAS, A
    STAFYLOPATIS, A
    INFORMATION PROCESSING LETTERS, 1995, 53 (04) : 229 - 234
  • [47] An edge-reduction algorithm for the vertex cover problem
    Han, Qiaoming
    Punnen, Abraham P.
    Ye, Yinyu
    OPERATIONS RESEARCH LETTERS, 2009, 37 (03) : 181 - 186
  • [48] Minimum weight feedback vertex sets in circle graphs
    Gavril, Fanica
    INFORMATION PROCESSING LETTERS, 2008, 107 (01) : 1 - 6
  • [49] Improved approximation algorithms for minimum weight vertex separators
    Feige, Uriel
    Hajiaghayi, Mohammadtaghi
    Lee, James R.
    SIAM JOURNAL ON COMPUTING, 2008, 38 (02) : 629 - 657
  • [50] An evolutionary game algorithm for minimum weighted vertex cover problem
    Li, Yalun
    Chai, Zhengyi
    Ma, Hongling
    Zhu, Sifeng
    SOFT COMPUTING, 2023, 27 (21) : 16087 - 16100