Combining Edge Weight and Vertex Weight for Minimum Vertex Cover Problem

被引:0
|
作者
Fang, Zhiwen [1 ]
Chu, Yang [1 ]
Qiao, Kan [2 ]
Feng, Xu [1 ]
Xu, Ke [1 ]
机构
[1] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[2] IIT, Dept Comp Sci, Chicago, IL 60616 USA
来源
基金
高等学校博士学科点专项科研基金;
关键词
RANDOM CONSTRAINT SATISFACTION; LOCAL SEARCH; MAXIMUM CLIQUE; BOUND ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Minimum Vertex Cover (MVC) problem is an important NP-hard combinatorial optimization problem. Constraint weighting is an effective technique in stochastic local search algorithms for the MVC problem. The edge weight and the vertex weight have been used separately by different algorithms. We present a new local search algorithm, namely VEWLS, which integrates the edge weighting scheme with the vertex weighting scheme. To the best of our knowledge, it is the first time to combine two weighting schemes for the MVC problem. Experiments over both the DIMACS benchmark and the BHOSLIB benchmark show that VEWLS outperforms NuMVC, the state-of-the-art local search algorithm for MVC, on 73% and 68% of the instances, respectively.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 50 条
  • [31] Approximation algorithms for minimum (weight) connected k-path vertex cover
    Li, Xiaosong
    Zhang, Zhao
    Huang, Xiaohui
    DISCRETE APPLIED MATHEMATICS, 2016, 205 : 101 - 108
  • [32] Towards faster local search for minimum weight vertex cover on massive graphs
    Cai, Shaowei
    Li, Yuanjie
    Hou, Wenying
    Wang, Haoran
    INFORMATION SCIENCES, 2019, 471 : 64 - 79
  • [33] Approximation algorithms for minimum weight connected 3-path vertex cover
    Ran, Yingli
    Zhang, Zhao
    Huang, Xiaohui
    Li, Xiaosong
    Du, Ding-Zhu
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 723 - 733
  • [34] Uncertain programming model for uncertain minimum weight vertex covering problem
    Chen, Lin
    Peng, Jin
    Zhang, Bo
    Li, Shengguo
    JOURNAL OF INTELLIGENT MANUFACTURING, 2017, 28 (03) : 625 - 632
  • [35] Uncertain programming model for uncertain minimum weight vertex covering problem
    Lin Chen
    Jin Peng
    Bo Zhang
    Shengguo Li
    Journal of Intelligent Manufacturing, 2017, 28 : 625 - 632
  • [36] A multi-start iterated greedy algorithm for the minimum weight vertex cover P3 problem
    Zhang, Wenjie
    Tu, Jianhua
    Wu, Lidong
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 359 - 366
  • [37] A new robust approach to solve minimum vertex cover problem: Malatya vertex-cover algorithm
    Yakut, Selman
    Oztemiz, Furkan
    Karci, Ali
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (17): : 19746 - 19769
  • [38] A new robust approach to solve minimum vertex cover problem: Malatya vertex-cover algorithm
    Selman Yakut
    Furkan Öztemiz
    Ali Karci
    The Journal of Supercomputing, 2023, 79 : 19746 - 19769
  • [39] Crown reductions for the minimum weighted vertex cover problem
    Chlebik, Miroslav
    Chlebikkova, Janka
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (03) : 292 - 312
  • [40] A new motion equation for the minimum vertex cover problem
    Xu, XS
    Tang, Z
    Wang, RL
    Wang, XG
    NEUROCOMPUTING, 2004, 56 : 441 - 446