QUASI-MAXIMUM EXPONENTIAL LIKELIHOOD ESTIMATORS FOR A DOUBLE AR(p) MODEL

被引:25
|
作者
Zhu, Ke [1 ]
Ling, Shiqing [2 ]
机构
[1] Chinese Acad Sci, NCMIS, AMSS, Beijing, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Asymptotic normality; double AR(p) model; QMELE and strong consistency; ABSOLUTE DEVIATIONS ESTIMATION; TIME-SERIES MODELS; INFINITE VARIANCE; CONDITIONAL HETEROSCEDASTICITY; GARCH PROCESSES; AUTOREGRESSIVE MODELS; ARCH(1) ERRORS; ARMA MODELS; REGRESSION; INFERENCE;
D O I
10.5705/ss.2011.086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper studies the quasi-maximum exponential likelihood estimator (QMELE) for the double AR(p) (DAR(p)) model: y(t) = Sigma(p)(i=1)phi(i)y(t-i) + eta(t)root omega+Sigma(p)(t=1)alpha(i)y(t-i)(2), where {eta(t)} is a white noise sequence. Under a fractional moment of y(t) with E eta(2)(t) < infinity, strong consistency and asymptotic normality of the global QMELE are established. A formal comparison is given with the QMLE in Ling (2007) and WLADE in Chan and Peng (2005). A simulation study is carried out to compare the performance of these estimators in finite samples. An example on the exchange rate is given.
引用
下载
收藏
页码:251 / 270
页数:20
相关论文
共 50 条
  • [31] Self-weighted quasi-maximum exponential likelihood estimator for ARFIMA-GARCH models
    Pan, Baoguo
    Chen, Min
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (04) : 716 - 729
  • [32] Quasi-maximum likelihood estimation for multiple volatility shifts
    Kim, Moosup
    Lee, Taewook
    Noh, Jungsik
    Baek, Changryong
    STATISTICS & PROBABILITY LETTERS, 2014, 86 : 50 - 60
  • [33] An efficient quasi-maximum likelihood decoder for PSK signals
    Luo, ZQ
    Luo, XD
    Kisialiou, M
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 561 - 564
  • [34] QUASI-MAXIMUM LIKELIHOOD ESTIMATION OF STOCHASTIC VOLATILITY MODELS
    RUIZ, E
    JOURNAL OF ECONOMETRICS, 1994, 63 (01) : 289 - 306
  • [35] Quasi-maximum likelihood estimation with bounded symmetric errors
    Miller, D
    Eales, J
    Preckel, P
    MAXIMUM LIKELIHOOD ESTIMATION OF MISSPECIFIED MODELS: TWENTY YEARS LATER, 2003, 17 : 133 - 148
  • [36] ESTIMATION, TESTING, AND FINITE SAMPLE PROPERTIES OF QUASI-MAXIMUM LIKELIHOOD ESTIMATORS IN GARCH-M MODELS
    Iglesias, Emma M.
    Phillips, Garry D. A.
    ECONOMETRIC REVIEWS, 2012, 31 (05) : 532 - 557
  • [37] Estimating a model of sportfishing trip expenditures using a quasi-maximum likelihood approach
    Melstrom, Richard T.
    TOURISM ECONOMICS, 2017, 23 (02) : 448 - 459
  • [38] On existence of maximum likelihood estimators in exponential families
    Bogdan, K
    Bogdan, M
    STATISTICS, 2000, 34 (02) : 137 - 149
  • [39] A penalized quasi-maximum likelihood method for variable selection in the spatial autoregressive model
    Liu, Xuan
    Chen, Jianbao
    Cheng, Suli
    SPATIAL STATISTICS, 2018, 25 : 86 - 104
  • [40] Laws of iterated logarithm for quasi-maximum likelihood estimator in generalized linear model
    Xiao, Zhihong
    Liu, Luqin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (03) : 611 - 617