QUASI-MAXIMUM EXPONENTIAL LIKELIHOOD ESTIMATORS FOR A DOUBLE AR(p) MODEL

被引:25
|
作者
Zhu, Ke [1 ]
Ling, Shiqing [2 ]
机构
[1] Chinese Acad Sci, NCMIS, AMSS, Beijing, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Asymptotic normality; double AR(p) model; QMELE and strong consistency; ABSOLUTE DEVIATIONS ESTIMATION; TIME-SERIES MODELS; INFINITE VARIANCE; CONDITIONAL HETEROSCEDASTICITY; GARCH PROCESSES; AUTOREGRESSIVE MODELS; ARCH(1) ERRORS; ARMA MODELS; REGRESSION; INFERENCE;
D O I
10.5705/ss.2011.086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper studies the quasi-maximum exponential likelihood estimator (QMELE) for the double AR(p) (DAR(p)) model: y(t) = Sigma(p)(i=1)phi(i)y(t-i) + eta(t)root omega+Sigma(p)(t=1)alpha(i)y(t-i)(2), where {eta(t)} is a white noise sequence. Under a fractional moment of y(t) with E eta(2)(t) < infinity, strong consistency and asymptotic normality of the global QMELE are established. A formal comparison is given with the QMLE in Ling (2007) and WLADE in Chan and Peng (2005). A simulation study is carried out to compare the performance of these estimators in finite samples. An example on the exchange rate is given.
引用
收藏
页码:251 / 270
页数:20
相关论文
共 50 条