A SEMIALGEBRAIC DESCRIPTION OF THE GENERAL MARKOV MODEL ON PHYLOGENETIC TREES

被引:13
|
作者
Allman, Elizabeth S. [1 ]
Rhodes, John A. [1 ]
Taylor, Amelia [2 ]
机构
[1] Univ Alaska, Dept Math & Stat, Fairbanks, AK 99775 USA
[2] Colorado Coll, Dept Math, Colorado Springs, CO 80903 USA
基金
美国国家科学基金会;
关键词
phylogenetic tree; phylogenetic variety; semialgebraic set; general Markov model; MIXTURE-MODELS; TENSOR RANK; INVARIANTS; IDENTIFIABILITY; VARIETIES; GEOMETRY; IDEALS;
D O I
10.1137/120901568
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many of the stochastic models used in inference of phylogenetic trees from biological sequence data have polynomial parameterization maps. The image of such a map-the collection of joint distributions for all parameter choices-forms the model space. Since the parameterization is polynomial, the Zariski closure of the model space is an algebraic variety which is typically much larger than the model space but amenable to study with algebraic methods. Of practical interest, however, is not the full variety but the subset formed by the model space. Here we develop complete semialgebraic descriptions of the model space arising from the k-state general Markov model on a tree, with slightly restricted parameters. Our approach depends upon both recently formulated analogues of Cayley's hyperdeterminant and on the construction of certain quadratic forms from the joint distribution whose positive (semi) definiteness encodes information about parameter values.
引用
收藏
页码:736 / 755
页数:20
相关论文
共 50 条
  • [41] CONSTRUCTION OF PHYLOGENETIC TREES
    FITCH, WM
    MARGOLIASH, E
    SCIENCE, 1967, 155 (3760) : 279 - +
  • [42] CLADOGRAMS AND PHYLOGENETIC TREES
    WILEY, EO
    SYSTEMATIC ZOOLOGY, 1979, 28 (01): : 88 - 92
  • [43] Groves of Phylogenetic Trees
    Cécile Ané
    Oliver Eulenstein
    Raul Piaggio-Talice
    Michael J. Sanderson
    Annals of Combinatorics, 2009, 13 : 139 - 167
  • [44] COMPARISON OF PHYLOGENETIC TREES
    ROBINSON, DF
    FOULDS, LR
    MATHEMATICAL BIOSCIENCES, 1981, 53 (1-2) : 131 - 147
  • [45] Inference of phylogenetic trees
    Kubatko, L. S.
    TUTORIALS IN MATHEMATICAL BIOSCIENCES IV: EVOLUTION AND ECOLOGY, 2008, 1922 : 1 - 38
  • [46] On Symmetries in Phylogenetic Trees
    Fusy, Eric
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [47] A general random combinatorial model of botanical trees
    Kruszewski, P
    Whitesides, S
    JOURNAL OF THEORETICAL BIOLOGY, 1998, 191 (02) : 221 - 236
  • [48] Groves of Phylogenetic Trees
    Ane, Cecile
    Eulenstein, Oliver
    Piaggio-Talice, Raul
    Sanderson, Michael J.
    ANNALS OF COMBINATORICS, 2009, 13 (02) : 139 - 167
  • [49] Drawing phylogenetic trees
    Bachmaier, C
    Brandes, U
    Schlieper, B
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 1110 - 1121
  • [50] Trees and Markov Convexity
    Lee, James R.
    Naor, Assaf
    Peres, Yuval
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (05) : 1609 - 1659