A SEMIALGEBRAIC DESCRIPTION OF THE GENERAL MARKOV MODEL ON PHYLOGENETIC TREES

被引:13
|
作者
Allman, Elizabeth S. [1 ]
Rhodes, John A. [1 ]
Taylor, Amelia [2 ]
机构
[1] Univ Alaska, Dept Math & Stat, Fairbanks, AK 99775 USA
[2] Colorado Coll, Dept Math, Colorado Springs, CO 80903 USA
基金
美国国家科学基金会;
关键词
phylogenetic tree; phylogenetic variety; semialgebraic set; general Markov model; MIXTURE-MODELS; TENSOR RANK; INVARIANTS; IDENTIFIABILITY; VARIETIES; GEOMETRY; IDEALS;
D O I
10.1137/120901568
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many of the stochastic models used in inference of phylogenetic trees from biological sequence data have polynomial parameterization maps. The image of such a map-the collection of joint distributions for all parameter choices-forms the model space. Since the parameterization is polynomial, the Zariski closure of the model space is an algebraic variety which is typically much larger than the model space but amenable to study with algebraic methods. Of practical interest, however, is not the full variety but the subset formed by the model space. Here we develop complete semialgebraic descriptions of the model space arising from the k-state general Markov model on a tree, with slightly restricted parameters. Our approach depends upon both recently formulated analogues of Cayley's hyperdeterminant and on the construction of certain quadratic forms from the joint distribution whose positive (semi) definiteness encodes information about parameter values.
引用
收藏
页码:736 / 755
页数:20
相关论文
共 50 条
  • [21] Multiple Model Tracking by Imprecise Markov Trees
    Antonucci, Alessandro
    Benavoli, Alessio
    Zaffalon, Marco
    de Cooman, Gert
    Hermans, Filip
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1767 - 1774
  • [22] EFFICIENT BAYESIAN INFERENCE OF GENERAL GAUSSIAN MODELS ON LARGE PHYLOGENETIC TREES
    Bastide, Paul
    Ho, Lam Si Tung
    Baele, Guy
    Lemey, Philippe
    Suchard, Marc A.
    ANNALS OF APPLIED STATISTICS, 2021, 15 (02): : 971 - 997
  • [23] Tropical Logistic Regression Model on Space of Phylogenetic Trees
    Aliatimis, Georgios
    Yoshida, Ruriko
    Boyaci, Burak
    Grant, James A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2024, 86 (08)
  • [24] A phase transition for a random cluster model on phylogenetic trees
    Mossel, E
    Steel, M
    MATHEMATICAL BIOSCIENCES, 2004, 187 (02) : 189 - 203
  • [25] Maximum Parsimony, Substitution Model, and Probability Phylogenetic Trees
    Weng, J. F.
    Thomas, D. A.
    Mareels, I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (01) : 67 - 80
  • [26] Timed and Probabilistic Model Checking over Phylogenetic Trees
    Ignacio Requeno, Jose
    Manuel Colom, Jose
    8TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS (PACBB 2014), 2014, 294 : 105 - 112
  • [27] Reducing Model Complexity of the General Markov Model of Evolution
    Jayaswal, Vivek
    Ababneh, Faisal
    Jermiin, Lars S.
    Robinson, John
    MOLECULAR BIOLOGY AND EVOLUTION, 2011, 28 (11) : 3045 - 3059
  • [28] DESCRIPTION OF THE CONNECTED COMPONENTS OF A SEMIALGEBRAIC SET IN SINGLE EXPONENTIAL TIME
    HEINTZ, J
    ROY, MF
    SOLERNO, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (02) : 121 - 140
  • [29] A STOCHASTIC RECRYSTALLIZATION MODEL - THE DESCRIPTION OF RECRYSTALLIZATION BY A MARKOV PROCESS
    GOBEL, IR
    INTERNATIONAL JOURNAL OF PLASTICITY, 1991, 7 (03) : 161 - 198
  • [30] A GENERAL MODEL DESCRIPTION FOR DISCRETE PROCESSES
    Schoenherr, Oliver
    Rose, Oliver
    PROCEEDINGS OF THE 2011 WINTER SIMULATION CONFERENCE (WSC), 2011, : 2201 - 2213