Reconstruction of gratings from noisy reflection data

被引:45
|
作者
Skaar, J [1 ]
Feced, R
机构
[1] Norwegian Univ Sci & Technol, Dept Phys Elect, NO-7491 Trondheim, Norway
[2] Nortel Networks, Harlow CM17 9NA, Essex, England
关键词
D O I
10.1364/JOSAA.19.002229
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The worst-case error amplification factor in reconstructing a grating from its complex reflection spectrum is shown to be of the order 1/T-min where T-min is the minimum transmissivity through the grating. For a uniform grating with coupling coefficient-length product kappaL, the error amplification is exp(2kappaL). The exponential dependence on the grating strength shows that spatial characterization of gratings from a measured reflection spectrum is impossible if the grating is sufficiently strong. For moderately strong gratings, a simple regularization technique is proposed to stabilize the solution of the inverse-scattering problem of computing the grating structure from the reflection spectrum. (C) 2002 Optical Society of America.
引用
收藏
页码:2229 / 2237
页数:9
相关论文
共 50 条
  • [1] Reconstruction of a fiber Bragg grating from noisy reflection data
    Rosenthal, A
    Horowitz, M
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (01) : 84 - 92
  • [2] Tomographic reconstruction from noisy data
    Golan, A
    Dose, V
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2002, 617 : 248 - 258
  • [3] Anatomically constrained reconstruction from noisy data
    Haldar, Justin P.
    Hernando, Diego
    Song, Sheng-Kwei
    Liang, Zhi-Pei
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (04) : 810 - 818
  • [4] Metric Graph Reconstruction from Noisy Data
    Aanjaneya, Mridul
    Chazal, Frederic
    Chen, Daniel
    Glisse, Marc
    Guibas, Leonidas
    Morozov, Dmitriy
    [J]. COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 37 - 46
  • [5] METRIC GRAPH RECONSTRUCTION FROM NOISY DATA
    Aanjaneya, Mridul
    Chazal, Frederic
    Chen, Daniel
    Glisse, Marc
    Guibas, Leonidas
    Morozov, Dmitriy
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2012, 22 (04) : 305 - 325
  • [6] SIGNAL RECONSTRUCTION FROM NOISY-PHASE AND NOISY-MAGNITUDE DATA
    TARATORIN, AM
    SIDEMAN, S
    [J]. APPLIED OPTICS, 1994, 33 (23) : 5415 - 5425
  • [7] DIFFUSION RECONSTRUCTION FROM VERY NOISY TOMOGRAPHIC DATA
    Louis, Alfred K.
    [J]. INVERSE PROBLEMS AND IMAGING, 2010, 4 (04) : 675 - 683
  • [8] IMAGE-RECONSTRUCTION FROM INCOMPLETE AND NOISY DATA
    GULL, SF
    DANIELL, GJ
    [J]. NATURE, 1978, 272 (5655) : 686 - 690
  • [9] Reconstruction of periodic functions from noisy input data
    Ternovskii, V. V.
    Khapaev, M. M.
    [J]. DOKLADY MATHEMATICS, 2009, 79 (01) : 81 - 82
  • [10] Curvelets and reconstruction of images from noisy radon data
    Candes, EJ
    Donoho, DL
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 108 - 117