Tomographic reconstruction from noisy data

被引:0
|
作者
Golan, A [1 ]
Dose, V [1 ]
机构
[1] American Univ, Dept Econ, Washington, DC 20016 USA
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalized maximum entropy based approach to noisy inverse problems such a's the Abel problem, tomography, or deconvolution is discussed and reviewed. Unlike the more traditional regularization approach, in the method discussed here, each unknown parameter (signal and noise) is redefined as a proper probability distribution within a certain pre-specified support, Then, the joint entropies of both, the noise and signal probabilities, are maximized subject to the observed data. We use this method for tomographic reconstruction of the soft x-ray emissivity of hot fusion plasma.
引用
收藏
页码:248 / 258
页数:11
相关论文
共 50 条
  • [1] DIFFUSION RECONSTRUCTION FROM VERY NOISY TOMOGRAPHIC DATA
    Louis, Alfred K.
    [J]. INVERSE PROBLEMS AND IMAGING, 2010, 4 (04) : 675 - 683
  • [2] Tomographic reconstruction of images from noisy projections - A preliminary study
    Dalgleish, A. P.
    Dowe, D. L.
    Svalbe, I. D.
    [J]. AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 539 - +
  • [3] Feasibility of Framework to Assess Noisy Data Inconsistency of SPECT Projection Data Prior to Tomographic Reconstruction
    Vija, A. H.
    Ding, X.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S95 - S95
  • [4] Recovering convex edges of an image from noisy tomographic data
    Goldenshluger, A
    Spokoiny, V
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1322 - 1334
  • [5] Anatomically constrained reconstruction from noisy data
    Haldar, Justin P.
    Hernando, Diego
    Song, Sheng-Kwei
    Liang, Zhi-Pei
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (04) : 810 - 818
  • [6] Comparing GA with MART to Tomographic Reconstruction of Ultrasound Images With and Without Noisy Input Data
    Kodali, Shyam R.
    Deb, K.
    Munshi, P.
    Kishore, N. N.
    [J]. 2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 2963 - 2970
  • [7] Reconstruction of gratings from noisy reflection data
    Skaar, J
    Feced, R
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (11): : 2229 - 2237
  • [8] Metric Graph Reconstruction from Noisy Data
    Aanjaneya, Mridul
    Chazal, Frederic
    Chen, Daniel
    Glisse, Marc
    Guibas, Leonidas
    Morozov, Dmitriy
    [J]. COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 37 - 46
  • [9] METRIC GRAPH RECONSTRUCTION FROM NOISY DATA
    Aanjaneya, Mridul
    Chazal, Frederic
    Chen, Daniel
    Glisse, Marc
    Guibas, Leonidas
    Morozov, Dmitriy
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2012, 22 (04) : 305 - 325
  • [10] TOMOGRAPHIC RECONSTRUCTION FROM LIMITED ANGULAR DATA
    PERES, A
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1979, 3 (06) : 800 - 803