METRIC GRAPH RECONSTRUCTION FROM NOISY DATA

被引:23
|
作者
Aanjaneya, Mridul [1 ]
Chazal, Frederic [2 ]
Chen, Daniel [1 ]
Glisse, Marc [2 ]
Guibas, Leonidas [1 ]
Morozov, Dmitriy [3 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] INRIA Saclay Ile de France, GEOMETRICA, F-91893 Orsay, France
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Visualizat Grp, Berkeley, CA 94720 USA
关键词
Reconstruction; metric graph; noise; inference; NETWORK;
D O I
10.1142/S0218195912600072
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Many real-world data sets can be viewed of as noisy samples of special types of metric spaces called metric graphs.(19) Building on the notions of correspondence and Gromov-Hausdorff distance in metric geometry, we describe a model for such data sets as an approximation of an underlying metric graph. We present a novel algorithm that takes as an input such a data set, and outputs a metric graph that is homeomorphic to the underlying metric graph and has bounded distortion of distances. We also implement the algorithm, and evaluate its performance on a variety of real world data sets.
引用
收藏
页码:305 / 325
页数:21
相关论文
共 50 条
  • [1] Metric Graph Reconstruction from Noisy Data
    Aanjaneya, Mridul
    Chazal, Frederic
    Chen, Daniel
    Glisse, Marc
    Guibas, Leonidas
    Morozov, Dmitriy
    [J]. COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 37 - 46
  • [2] Tomographic reconstruction from noisy data
    Golan, A
    Dose, V
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2002, 617 : 248 - 258
  • [3] Robust Graph Learning From Noisy Data
    Kang, Zhao
    Pan, Haiqi
    Hoi, Steven C. H.
    Xu, Zenglin
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 1833 - 1843
  • [4] Anatomically constrained reconstruction from noisy data
    Haldar, Justin P.
    Hernando, Diego
    Song, Sheng-Kwei
    Liang, Zhi-Pei
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (04) : 810 - 818
  • [5] Reconstruction of gratings from noisy reflection data
    Skaar, J
    Feced, R
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (11): : 2229 - 2237
  • [6] Efficient Graph Learning From Noisy and Incomplete Data
    Berger, Peter
    Hannak, Gabor
    Matz, Gerald
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2020, 6 : 105 - 119
  • [7] Statistical Analysis of Metric Graph Reconstruction
    Lecci, Fabrizio
    Rinaldo, Alessandro
    Wasserman, Larry
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 3425 - 3446
  • [8] Statistical analysis of metric graph reconstruction
    [J]. 1600, Microtome Publishing (15):
  • [9] SIGNAL RECONSTRUCTION FROM NOISY-PHASE AND NOISY-MAGNITUDE DATA
    TARATORIN, AM
    SIDEMAN, S
    [J]. APPLIED OPTICS, 1994, 33 (23) : 5415 - 5425
  • [10] DIFFUSION RECONSTRUCTION FROM VERY NOISY TOMOGRAPHIC DATA
    Louis, Alfred K.
    [J]. INVERSE PROBLEMS AND IMAGING, 2010, 4 (04) : 675 - 683