Parallel Jacobi-Davidson for solving generalized eigenvalue problems

被引:0
|
作者
Nool, M
van der Ploeg, A
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
[2] MARIN, NL-6700 AA Wageningen, Netherlands
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the Jacobi-Davidson method for the solution of large generalised eigenproblems as they arise in MagnetoHydroDynamics. We have combined Jacobi-Davidson (using standard Ritz values) with a shift and invert technique. We apply a complete LU decomposition in which reordering strategies based on a combination of block cyclic reduction and domain decomposition result in a well-parallelisable algorithm. Moreover, we describe a variant of Jacobi-Davidson in which harmonic Ritz values are used. In this variant the same parallel. LU decomposition is used, but this time as a preconditioner to solve the 'correction' equation. The size of the relatively small projected eigenproblems which have to be solved in the Jacobi-Davidson method is controlled by several parameters. The influence of these parameters on both the parallel performance and convergence behaviour will be studied. Numerical results of Jacobi-Davidson obtained with standard and harmonic Ritz values will be shown. Executions have been performed on a Gray T3E.
引用
收藏
页码:58 / 70
页数:13
相关论文
共 50 条
  • [1] A Jacobi-Davidson method for solving complex symmetric eigenvalue problems
    Arbenz, P
    Hochstenbach, ME
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1655 - 1673
  • [2] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    Booten, A
    Fokkema, D
    Sleijpen, G
    VanderVorst, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 131 - 134
  • [3] A parallel polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems
    Huang, Tsung-Ming
    Hwang, Feng-Nan
    Lai, Sheng-Hong
    Wang, Weichung
    Wei, Zih-Hao
    [J]. COMPUTERS & FLUIDS, 2011, 45 (01) : 207 - 214
  • [4] Jacobi-Davidson methods for cubic eigenvalue problems
    Hwang, TM
    Lin, WW
    Liu, JL
    Wang, WC
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (07) : 605 - 624
  • [5] A Jacobi-Davidson iteration method for linear eigenvalue problems
    Sleijpen, GLG
    VanderVorst, HA
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (02) : 401 - 425
  • [6] A Jacobi-Davidson iteration method for linear eigenvalue problems
    Sleijpen, GLG
    Van der Vorst, HA
    [J]. SIAM REVIEW, 2000, 42 (02) : 267 - 293
  • [7] A parallel Jacobi-Davidson-type method for solving large generalized eigenvalue problems in magnetohydrodynamics
    Nool, M
    Van der Ploeg, A
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01): : 95 - 112
  • [8] Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax = λBx with singular B
    Rommes, Joost
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 995 - 1015
  • [9] Jacobi-Davidson method for the second order fractional eigenvalue problems
    He, Ying
    Zuo, Qian
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 143
  • [10] Preconditioned inexact Jacobi-Davidson method for large symmetric eigenvalue problems
    Miao, Hong-Yi
    Wang, Li
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):