Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax = λBx with singular B

被引:0
|
作者
Rommes, Joost [1 ]
机构
[1] Univ Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
关键词
sparse generalized eigenvalue problems; purification; semi-inner product; implicitly restarted Arnoldi; Jacobi-Davidson; preconditioning;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many physical situations, a few specific eigenvalues of a large sparse generalized eigenvalue problem Ax = lambda Bx are needed. If exact linear solves with A-sigma B are available, implicitly restarted Arnoldi with purification is a common approach for problems where B is positive semidefinite. In this paper, a new approach based on implicitly restarted Arnoldi will be presented that avoids most of the problems due to the singularity of B. Secondly, if exact solves are not available, Jacobi-Davidson QZ will be presented as a robust method to compute a few specific eigenvalues. Results are illustrated by numerical experiments.
引用
收藏
页码:995 / 1015
页数:21
相关论文
共 50 条
  • [1] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    Booten, A.
    Fokkema, D.
    Sleijpen, G.
    Van der vorst, H.
    Report - Department of Numerical Mathematics, 1995, (14): : 1 - 7
  • [2] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    Z Angew Math Mech ZAMM, Suppl 1 (131):
  • [3] Jacobi-Davidson methods for generalized MHD-eigenvalue problems
    Booten, A
    Fokkema, D
    Sleijpen, G
    VanderVorst, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 131 - 134
  • [4] Jacobi-Davidson methods for cubic eigenvalue problems
    Hwang, TM
    Lin, WW
    Liu, JL
    Wang, WC
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (07) : 605 - 624
  • [5] Parallel Jacobi-Davidson for solving generalized eigenvalue problems
    Nool, M
    van der Ploeg, A
    VECTOR AND PARALLEL PROCESSING - VECPAR'98, 1999, 1573 : 58 - 70
  • [6] Harmonic and refined harmonic shift-invert residual Arnoldi and Jacobi-Davidson methods for interior eigenvalue problems
    Jia, Zhongxiao
    Li, Cen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 282 : 83 - 97
  • [7] Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems
    Hochstenbach, Michiel E.
    Muhic, Andrej
    Plestenjak, Bor
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 251 - 263
  • [8] A Jacobi-Davidson iteration method for linear eigenvalue problems
    Sleijpen, GLG
    VanderVorst, HA
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (02) : 401 - 425
  • [9] A Jacobi-Davidson iteration method for linear eigenvalue problems
    Sleijpen, GLG
    Van der Vorst, HA
    SIAM REVIEW, 2000, 42 (02) : 267 - 293
  • [10] Global convergence of the restarted Lanczos and Jacobi-Davidson methods for symmetric eigenvalue problems
    Aishima, Kensuke
    NUMERISCHE MATHEMATIK, 2015, 131 (03) : 405 - 423