Parallel Jacobi-Davidson for solving generalized eigenvalue problems

被引:0
|
作者
Nool, M
van der Ploeg, A
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
[2] MARIN, NL-6700 AA Wageningen, Netherlands
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the Jacobi-Davidson method for the solution of large generalised eigenproblems as they arise in MagnetoHydroDynamics. We have combined Jacobi-Davidson (using standard Ritz values) with a shift and invert technique. We apply a complete LU decomposition in which reordering strategies based on a combination of block cyclic reduction and domain decomposition result in a well-parallelisable algorithm. Moreover, we describe a variant of Jacobi-Davidson in which harmonic Ritz values are used. In this variant the same parallel. LU decomposition is used, but this time as a preconditioner to solve the 'correction' equation. The size of the relatively small projected eigenproblems which have to be solved in the Jacobi-Davidson method is controlled by several parameters. The influence of these parameters on both the parallel performance and convergence behaviour will be studied. Numerical results of Jacobi-Davidson obtained with standard and harmonic Ritz values will be shown. Executions have been performed on a Gray T3E.
引用
收藏
页码:58 / 70
页数:13
相关论文
共 50 条
  • [21] A MULTILEVEL JACOBI-DAVIDSON METHOD FOR POLYNOMIAL PDE EIGENVALUE PROBLEMS ARISING IN PLASMA PHYSICS
    Hochbruck, Marlis
    Loechel, Dominik
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (06): : 3151 - 3169
  • [22] A parallel, block, Jacobi-Davidson implementation for solving large eigenproblems on coarse grain environments
    Stathopoulos, A
    McCombs, JR
    [J]. INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOL VI, PROCEEDINGS, 1999, : 2920 - 2926
  • [23] HOMOGENEOUS JACOBI-DAVIDSON
    Hochstenbach, Michiel E.
    Notay, Yvan
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 29 : 19 - 30
  • [24] A Parallel Jacobi-Davidson Algorithm with Block FSAI Preconditioning
    Ferronato, M.
    Janna, C.
    Pini, G.
    Gambolati, G.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [25] A parallel implementation of the jacobi-davidson eigensolver for unsymmetric matrices
    Instituto I3M, Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia 46022, Spain
    不详
    不详
    [J]. Lect. Notes Comput. Sci., (380-393):
  • [26] Is Jacobi-Davidson faster than Davidson?
    Notay, Y
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) : 522 - 543
  • [27] A Parallel Implementation of the Jacobi-Davidson Eigensolver for Unsymmetric Matrices
    Romero, Eloy
    Cruz, Manuel B.
    Roman, Jose E.
    Vasconcelos, Paulo B.
    [J]. HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2010, 2011, 6449 : 380 - +
  • [28] Jacobi-Davidson type method for the two-parameter eigenvalue problem
    Hochstenbach, ME
    Kosir, T
    Plestenjak, B
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (02) : 477 - 497
  • [29] Parallel Jacobi-Davidson method for multichannel blind equalization criterium
    Yang, LT
    [J]. INTERNATIONAL CONFERENCE ON PARALLEL COMPUTING IN ELECTRICAL ENGINEERING - PARELEC 2000, PROCEEDINGS, 2000, : 67 - 72
  • [30] Practical Aspects of Domain Decomposition in Jacobi-Davidson for Parallel Performance
    Genseberger, Menno
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 839 - 847