Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation

被引:117
|
作者
Kang, Daesung [1 ,2 ]
Park, Ji Eun [1 ,2 ]
Kim, Young-Hoon [3 ]
Kim, Jeong Hoon [3 ]
Oh, Joo Young [1 ,2 ]
Kim, Jungyoun [1 ,2 ]
Kim, Yikyung [4 ]
Kim, Sung Tae [4 ]
Kim, Ho Sung [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 43 Olymp Ro 88, Seoul 05505, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 43 Olymp Ro 88, Seoul 05505, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Neurosurg, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
关键词
atypical; diffusion-weighted imaging; magnetic resonance imaging; radiomics; primary central nervous system lymphoma; IMAGING PREDICTOR; TUMOR PHENOTYPE; GLIOBLASTOMA; FEATURES; MRI; HETEROGENEITY; PERFORMANCE; SURVIVAL; UTILITY;
D O I
10.1093/neuonc/noy021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Radiomics is a rapidly growing field in neuro-oncology, but studies have been limited to conventional MRI, and external validation is critically lacking. We evaluated technical feasibility, diagnostic performance, and generalizability of a diffusion radiomics model for identifying atypical primary central nervous system lymphoma (PCNSL) mimicking glioblastoma. Methods. A total of 1618 radiomics features were extracted from diffusion and conventional MRI from 112 patients (training set, 70 glioblastomas and 42 PCNSLs). Feature selection and classification were optimized using a machine-learning algorithm. The diagnostic performance was tested in 42 patients of internal and external validation sets. The performance was compared with that of human readers (2 neuroimaging experts), cerebral blood volume (90% histogram cutoff, CBV90), and apparent diffusion coefficient (10% histogram, ADC10) using the area under the receiver operating characteristic curve (AUC). Results. The diffusion radiomics was optimized with the combination of recursive feature elimination and a random forest classifier (AUC 0.983, stability 2.52%). In internal validation, the diffusion model (AUC 0.984) showed similar performance with conventional (AUC 0.968) or combined diffusion and conventional radiomics (AUC 0.984) and better than human readers (AUC 0.825-0.908), CBV90 (AUC 0.905), or ADC10 (AUC 0.787) in atypical PCNSL diagnosis. In external validation, the diffusion radiomics showed robustness (AUC 0.944) and performed better than conventional radiomics (AUC 0.819) and similar to combined radiomics (AUC 0.946) or human readers (AUC 0.896-0.930). Conclusion. The diffusion radiomics model had good generalizability and yielded a better diagnostic performance than conventional radiomics or single advanced MRI in identifying atypical PCNSL mimicking glioblastoma.
引用
收藏
页码:1251 / 1261
页数:11
相关论文
共 50 条
  • [41] Diagnostic delay and prognosis in primary central nervous system lymphoma compared with glioblastoma multiforme
    Cerqua, R.
    Balestrini, S.
    Perozzi, C.
    Cameriere, V.
    Renzi, S.
    Lagalla, G.
    Mancini, G.
    Montanari, M.
    Leoni, P.
    Scerrati, M.
    Iacoangeli, M.
    Silvestrini, M.
    Luzzi, S.
    Provinciali, L.
    NEUROLOGICAL SCIENCES, 2016, 37 (01) : 23 - 29
  • [42] Primary central nervous system natural killer/Tcell lymphoma: An atypical case of chronic meningitis
    Alessandro, Lucas
    Carpani, Federico
    Arakaki, Naomi
    Kaski, Diego
    Chaves, Hernan
    JOURNAL OF NEURORADIOLOGY, 2017, 44 (03) : 228 - 230
  • [43] CSF levels of BAFF in patients with primary central nervous system lymphoma as a diagnostic biomarker
    Mizutani, H.
    Nakane, S.
    Takamatsu, K.
    Ando, Y.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2017, 381 : 745 - 745
  • [44] HIV-related primary central nervous system lymphoma: Still a diagnostic challenge
    Pagani, L
    RIVISTA DI NEURORADIOLOGIA, 1999, 12 (05): : 653 - 658
  • [45] Diagnostic delay and prognosis in primary central nervous system lymphoma compared with glioblastoma multiforme
    R. Cerqua
    S. Balestrini
    C. Perozzi
    V. Cameriere
    S. Renzi
    G. Lagalla
    G. Mancini
    M. Montanari
    P. Leoni
    M. Scerrati
    M. Iacoangeli
    M. Silvestrini
    S. Luzzi
    L. Provinciali
    Neurological Sciences, 2016, 37 : 23 - 29
  • [46] Primary central nervous system lymphoma with diffuse subcortical white matter diffusion restriction
    de Araujo, Danilo Alves
    de Morais, Rafaela Queiroz
    Correa, Diogo Goulart
    NEURORADIOLOGY JOURNAL, 2024, 37 (01): : 128 - 129
  • [47] Primary central nervous system lymphoma: clinicopathological and genomic insights for therapeutic development
    Kensuke Tateishi
    Yohei Miyake
    Taishi Nakamura
    Tetsuya Yamamoto
    Brain Tumor Pathology, 2021, 38 : 173 - 182
  • [48] Primary central nervous system lymphoma: clinicopathological and genomic insights for therapeutic development
    Tateishi, Kensuke
    Miyake, Yohei
    Nakamura, Taishi
    Yamamoto, Tetsuya
    BRAIN TUMOR PATHOLOGY, 2021, 38 (03) : 173 - 182
  • [49] Clinical Outcomes and Treatment Patterns of Primary Central Nervous System Lymphoma: Multicenter Retrospective Analysis
    Guven, Serkan
    Yavuz, Boran
    Yucel, Elcin Erdogan
    Karatas, Aylin Fatma
    Ozsan, Guner Hayri
    Demirkan, Fatih
    Undar, Bulent
    Ozcan, Mehmet Ali
    Kiper, Hatice Demet
    Cetintepe, Tugba
    Gocer, Mesut
    Kurtoglu, Erdal
    Aydin, Berrin Balik
    Sevindik, Omur Gokmen
    Kaya, Sureyya Yigit
    Alacacioglu, Inci
    EURASIAN JOURNAL OF MEDICINE AND ONCOLOGY, 2023, 7 (01): : 49 - 56
  • [50] Multicenter Analysis Of Primary Central Nervous System Lymphoma: Patient Characteristics, Treatment Patterns and Survival
    Karmali, Reem
    De Vita, Michael
    Petrich, Adam M.
    Nabhan, Chadi
    Kruczek, Kimberly
    Raizer, Jeffrey
    McFarland, Daniel
    Peace, David
    Lukas, Rimas
    Basu, Sanjib
    Gregory, Stephanie A.
    Venugopal, Parameswaran
    BLOOD, 2013, 122 (21)