Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation

被引:117
|
作者
Kang, Daesung [1 ,2 ]
Park, Ji Eun [1 ,2 ]
Kim, Young-Hoon [3 ]
Kim, Jeong Hoon [3 ]
Oh, Joo Young [1 ,2 ]
Kim, Jungyoun [1 ,2 ]
Kim, Yikyung [4 ]
Kim, Sung Tae [4 ]
Kim, Ho Sung [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 43 Olymp Ro 88, Seoul 05505, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 43 Olymp Ro 88, Seoul 05505, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Neurosurg, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
关键词
atypical; diffusion-weighted imaging; magnetic resonance imaging; radiomics; primary central nervous system lymphoma; IMAGING PREDICTOR; TUMOR PHENOTYPE; GLIOBLASTOMA; FEATURES; MRI; HETEROGENEITY; PERFORMANCE; SURVIVAL; UTILITY;
D O I
10.1093/neuonc/noy021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Radiomics is a rapidly growing field in neuro-oncology, but studies have been limited to conventional MRI, and external validation is critically lacking. We evaluated technical feasibility, diagnostic performance, and generalizability of a diffusion radiomics model for identifying atypical primary central nervous system lymphoma (PCNSL) mimicking glioblastoma. Methods. A total of 1618 radiomics features were extracted from diffusion and conventional MRI from 112 patients (training set, 70 glioblastomas and 42 PCNSLs). Feature selection and classification were optimized using a machine-learning algorithm. The diagnostic performance was tested in 42 patients of internal and external validation sets. The performance was compared with that of human readers (2 neuroimaging experts), cerebral blood volume (90% histogram cutoff, CBV90), and apparent diffusion coefficient (10% histogram, ADC10) using the area under the receiver operating characteristic curve (AUC). Results. The diffusion radiomics was optimized with the combination of recursive feature elimination and a random forest classifier (AUC 0.983, stability 2.52%). In internal validation, the diffusion model (AUC 0.984) showed similar performance with conventional (AUC 0.968) or combined diffusion and conventional radiomics (AUC 0.984) and better than human readers (AUC 0.825-0.908), CBV90 (AUC 0.905), or ADC10 (AUC 0.787) in atypical PCNSL diagnosis. In external validation, the diffusion radiomics showed robustness (AUC 0.944) and performed better than conventional radiomics (AUC 0.819) and similar to combined radiomics (AUC 0.946) or human readers (AUC 0.896-0.930). Conclusion. The diffusion radiomics model had good generalizability and yielded a better diagnostic performance than conventional radiomics or single advanced MRI in identifying atypical PCNSL mimicking glioblastoma.
引用
收藏
页码:1251 / 1261
页数:11
相关论文
共 50 条
  • [31] Diagnostic and therapeutic quandaries in primary manifestation of Hodgkin's disease in the central nervous system
    Kalinka, E
    Robak, T
    Wrzesien-Kus, A
    Krykowski, E
    Warzocha, K
    ANNALS OF HEMATOLOGY, 2002, 81 (05) : 289 - 291
  • [32] Influence of preoperative corticosteroid treatment on rate of diagnostic surgeries in primary central nervous system lymphoma: a multicenter retrospective study
    Scheichel, Florian
    Marhold, Franz
    Pinggera, Daniel
    Kiesel, Barbara
    Rossmann, Tobias
    Popadic, Branko
    Woehrer, Adelheid
    Weber, Michael
    Kitzwoegerer, Melitta
    Geissler, Klaus
    Dopita, Astrid
    Oberndorfer, Stefan
    Pfisterer, Wolfgang
    Freyschlag, Christian F.
    Widhalm, Georg
    Ungersboeck, Karl
    Roessler, Karl
    BMC CANCER, 2021, 21 (01)
  • [33] Influence of preoperative corticosteroid treatment on rate of diagnostic surgeries in primary central nervous system lymphoma: a multicenter retrospective study
    Florian Scheichel
    Franz Marhold
    Daniel Pinggera
    Barbara Kiesel
    Tobias Rossmann
    Branko Popadic
    Adelheid Woehrer
    Michael Weber
    Melitta Kitzwoegerer
    Klaus Geissler
    Astrid Dopita
    Stefan Oberndorfer
    Wolfgang Pfisterer
    Christian F. Freyschlag
    Georg Widhalm
    Karl Ungersboeck
    Karl Roessler
    BMC Cancer, 21
  • [34] Primary lymphoma of the central nervous system: Typical and atypical CT and MR imaging appearances
    Erdag, N
    Bhorade, RM
    Alberico, RA
    Yousuf, N
    Patel, MR
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2001, 176 (05) : 1319 - 1326
  • [35] Diagnostic advances and new trends for the treatment of primary central nervous system lymphoma
    Basso, U
    Brandes, AA
    EUROPEAN JOURNAL OF CANCER, 2002, 38 (10) : 1298 - 1312
  • [36] The Influence of Corticosteroids on Diagnostic Accuracy of Biopsy for Primary Central Nervous System Lymphoma
    Binnahil, Mashary
    Au, Karolyn
    Lu, Jian-Qiang
    Wheatley, Blaise Matthew
    Sankar, Tejas
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2016, 43 (05) : 721 - 725
  • [37] Differentiating glioblastoma from primary central nervous system lymphoma of atypical manifestation using multiparametric magnetic resonance imaging: A comparative study
    Feng, Aozi
    Li, Li
    Huang, Tao
    Li, Shuna
    He, Ningxia
    Huang, Liying
    Zeng, Mengnan
    Lyu, Jun
    HELIYON, 2023, 9 (04)
  • [38] A diagnostic challenge of primary Central nervous system lymphoma: from the eyes to the brain
    Su, Min
    Huang, Dehui
    Sun, Liuqing
    Dong, Zhao
    Wu, Lei
    Yu, Shengyuan
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2021, 131 (11) : 1139 - 1145
  • [39] Diagnostic Features of MRI in Evaluation of Primary Central Nervous System Lymphoma at Presentation
    Maqsood, Bushra
    Masood, Muhammad Ahsan
    PAKISTAN JOURNAL OF MEDICAL & HEALTH SCIENCES, 2020, 14 (03): : 585 - 586
  • [40] CSF neopterin level as a diagnostic marker in primary central nervous system lymphoma
    Viaccoz, Aurelien
    Ducray, Francois
    Tholance, Yannick
    Barcelos, Gleicy Keli
    Thomas-Maisonneuve, Laure
    Ghesquieres, Herve
    Meyronet, David
    Quadrio, Isabelle
    Cartalat-Carel, Stephanie
    Louis-Tisserand, Guy
    Jouanneau, Emmanuel
    Guyotat, Jacques
    Honnorat, Jerome
    Perret-Liaudet, Armand
    NEURO-ONCOLOGY, 2015, 17 (11) : 1497 - 1503