Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation

被引:117
|
作者
Kang, Daesung [1 ,2 ]
Park, Ji Eun [1 ,2 ]
Kim, Young-Hoon [3 ]
Kim, Jeong Hoon [3 ]
Oh, Joo Young [1 ,2 ]
Kim, Jungyoun [1 ,2 ]
Kim, Yikyung [4 ]
Kim, Sung Tae [4 ]
Kim, Ho Sung [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Radiol, 43 Olymp Ro 88, Seoul 05505, South Korea
[2] Univ Ulsan, Coll Med, Asan Med Ctr, Res Inst Radiol, 43 Olymp Ro 88, Seoul 05505, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Neurosurg, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
关键词
atypical; diffusion-weighted imaging; magnetic resonance imaging; radiomics; primary central nervous system lymphoma; IMAGING PREDICTOR; TUMOR PHENOTYPE; GLIOBLASTOMA; FEATURES; MRI; HETEROGENEITY; PERFORMANCE; SURVIVAL; UTILITY;
D O I
10.1093/neuonc/noy021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Radiomics is a rapidly growing field in neuro-oncology, but studies have been limited to conventional MRI, and external validation is critically lacking. We evaluated technical feasibility, diagnostic performance, and generalizability of a diffusion radiomics model for identifying atypical primary central nervous system lymphoma (PCNSL) mimicking glioblastoma. Methods. A total of 1618 radiomics features were extracted from diffusion and conventional MRI from 112 patients (training set, 70 glioblastomas and 42 PCNSLs). Feature selection and classification were optimized using a machine-learning algorithm. The diagnostic performance was tested in 42 patients of internal and external validation sets. The performance was compared with that of human readers (2 neuroimaging experts), cerebral blood volume (90% histogram cutoff, CBV90), and apparent diffusion coefficient (10% histogram, ADC10) using the area under the receiver operating characteristic curve (AUC). Results. The diffusion radiomics was optimized with the combination of recursive feature elimination and a random forest classifier (AUC 0.983, stability 2.52%). In internal validation, the diffusion model (AUC 0.984) showed similar performance with conventional (AUC 0.968) or combined diffusion and conventional radiomics (AUC 0.984) and better than human readers (AUC 0.825-0.908), CBV90 (AUC 0.905), or ADC10 (AUC 0.787) in atypical PCNSL diagnosis. In external validation, the diffusion radiomics showed robustness (AUC 0.944) and performed better than conventional radiomics (AUC 0.819) and similar to combined radiomics (AUC 0.946) or human readers (AUC 0.896-0.930). Conclusion. The diffusion radiomics model had good generalizability and yielded a better diagnostic performance than conventional radiomics or single advanced MRI in identifying atypical PCNSL mimicking glioblastoma.
引用
收藏
页码:1251 / 1261
页数:11
相关论文
共 50 条
  • [1] Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach
    Suh, Hie Bum
    Choi, Yoon Seong
    Bae, Sohi
    Ahn, Sung Soo
    Chang, Jong Hee
    Kang, Seok-Gu
    Kim, Eui Hyun
    Kim, Se Hoon
    Lee, Seung-Koo
    EUROPEAN RADIOLOGY, 2018, 28 (09) : 3832 - 3839
  • [2] Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach
    Hie Bum Suh
    Yoon Seong Choi
    Sohi Bae
    Sung Soo Ahn
    Jong Hee Chang
    Seok-Gu Kang
    Eui Hyun Kim
    Se Hoon Kim
    Seung-Koo Lee
    European Radiology, 2018, 28 : 3832 - 3839
  • [3] Atypical Presentation of Primary Central Nervous System Lymphoma
    da Silva-Junior, Francisco Pereira
    Nogueira, Ricardo de Carvalho
    Nitrini, Ricardo
    Lucato, Leandro Tavares
    Scaff, Milberto
    Marchiori, Paulo Euripedes
    ARCHIVES OF NEUROLOGY, 2009, 66 (03) : 406 - 407
  • [4] Atypical appearance of a primary central nervous system lymphoma
    Trendelenburg, George
    Zimmer, Claus
    Forschler, Annette
    Stadelmann, Christine
    Zschenderlein, Rolf
    ARCHIVES OF NEUROLOGY, 2006, 63 (06) : 908 - 909
  • [5] Diagnostic delay in primary central nervous system lymphoma
    Haldorsen, IS
    Espeland, A
    Larsen, JL
    Mella, O
    ACTA ONCOLOGICA, 2005, 44 (07) : 728 - 734
  • [6] Atypical radiological findings of primary central nervous system lymphoma
    Lin, Xuling
    Khan, Iram Rais Alam
    Seet, Ying Hao Christopher
    Lee, Hwei Yee
    Yu, Wai-Yung
    NEURORADIOLOGY, 2020, 62 (06) : 669 - 676
  • [7] Multiparametric-MRI-Based Radiomics Model for Differentiating Primary Central Nervous System Lymphoma From Glioblastoma: Development and Cross-Vendor Validation
    Xia, Wei
    Hu, Bin
    Li, Haiqing
    Geng, Chen
    Wu, Qiuwen
    Yang, Liqin
    Yin, Bo
    Gao, Xin
    Li, Yuxin
    Geng, Daoying
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (01) : 242 - 250
  • [8] A rare extrapyramidal manifestation in a patient with primary central nervous system lymphoma
    Tee, Tze Yuan
    Khoo, Ching Soong
    Ibrahim, Norlinah Mohamed
    Osman, Syazarina Sharis
    NEUROLOGY INDIA, 2019, 67 (01) : 297 - 299
  • [9] Primary lymphoma of the central nervous system-a diagnostic challenge
    Deckert, Martina
    Brunn, Anna
    Montesinos-Rongen, Manuel
    Terreni, Maria Rosa
    Ponzoni, Maurilio
    HEMATOLOGICAL ONCOLOGY, 2014, 32 (02) : 57 - 67
  • [10] PRIMARY LYMPHOMA OF THE CENTRAL-NERVOUS-SYSTEM - A DIAGNOSTIC PROBLEM
    CHAYASIRISOBHON, S
    KUMAR, V
    ALI, I
    STIEPEL, C
    JOURNAL OF THE NATIONAL MEDICAL ASSOCIATION, 1987, 79 (02) : 198 - 200