Parametric inference for discretely observed non-ergodic diffusions

被引:25
|
作者
Jacod, Jean [1 ]
机构
[1] Univ Paris 06, UFR Math, F-75252 Paris, France
关键词
non-ergodic diffusion processes; parametric inference for diffusions;
D O I
10.3150/bj/1151525127
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a multidimensional diffusion process X whose drift and diffusion coefficients depend respectively on a parameter lambda and theta. This process is observed at n + 1 equally spaced times 0, Delta(n), 2 Delta(n),..., n Delta(n), and T-n = n Delta(n) denotes the length of the 'observation window'. We are interested in estimating lambda and/or theta. Under suitable smoothness and identifiability conditions, we exhibit estimators lambda(n) and theta(n) such that the variables root n(theta(n) - theta) and root T-n(lambda(n) -lambda) are tight for Delta(n) -> 0 and T-n -> infinity. When lambda is known, we can even drop the assumption that T-n -> infinity. These results hold without any kind of ergodicity or even recurrence assumption on the diffusion process.
引用
收藏
页码:383 / 401
页数:19
相关论文
共 50 条
  • [21] Nonparametric Bayesian inference for ergodic diffusions
    Panzar, Laura
    van Zanten, Harry
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (12) : 4193 - 4199
  • [22] Ergodic descriptors of non-ergodic stochastic processes
    Mangalam, Madhur
    Kelty-Stephen, Damian G.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [23] Ergodic and non-ergodic clustering of inertial particles
    Gustavsson, K.
    Mehlig, B.
    EPL, 2011, 96 (06)
  • [24] On non-ergodic asset prices
    Horst, Ulrich
    Wenzelburger, Jan
    ECONOMIC THEORY, 2008, 34 (02) : 207 - 234
  • [25] Non-ergodic laser cooling
    Cohen-Tannoudji, C
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2219 - 2221
  • [26] THE NON-ERGODIC JACKSON NETWORK
    GOODMAN, JB
    MASSEY, WA
    JOURNAL OF APPLIED PROBABILITY, 1984, 21 (04) : 860 - 869
  • [27] On non-ergodic asset prices
    Ulrich Horst
    Jan Wenzelburger
    Economic Theory, 2008, 34 : 207 - 234
  • [28] RANDOMNESS AND NON-ERGODIC SYSTEMS
    Franklin, Johanna N. Y.
    Towsner, Henry
    MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (04) : 711 - 744
  • [29] ASYMPTOTIC OPTIMAL INFERENCE FOR NON-ERGODIC MODELS - BASAWA,IV, SCOTT,DJ
    BARNDORFFNIELSEN, OE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (387) : 734 - 735
  • [30] The Computational Cost of Blocking for Sampling Discretely Observed Diffusions
    Mider, Marcin
    Jenkins, Paul A.
    Pollock, Murray
    Roberts, Gareth O.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (04) : 3007 - 3027