RANDOMNESS AND NON-ERGODIC SYSTEMS

被引:0
|
作者
Franklin, Johanna N. Y. [1 ]
Towsner, Henry [2 ]
机构
[1] Hofstra Univ, Dept Math, Hempstead, NY 11549 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
Algorithmic randomness; Martin-Lof random; dynamical system; ergodic theorem; upcrossing; ERGODIC THEOREM; PROBABILITY; TRANSFORMATIONS; STACKING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the points that satisfy Birkhoff's ergodic theorem under certain computability conditions in terms of algorithmic randomness. First, we use the method of cutting and stacking to show that if an element x of the Cantor space is not Martin-Lof random, there is a computable measure-preserving transformation and a computable set that witness that x is not typical with respect to the ergodic theorem, which gives us the converse of a theorem by V'yugin. We further show that if x is weakly 2-random, then it satisfies the ergodic theorem for all computable measure-preserving transformations and all lower semi-computable functions.
引用
收藏
页码:711 / 744
页数:34
相关论文
共 50 条
  • [1] On the static mechanics of non-ergodic systems
    Jaffe, G
    [J]. ANNALEN DER PHYSIK, 1925, 76 (07) : 680 - 708
  • [2] Ergodic observables in non-ergodic systems: The example of the harmonic chain
    Baldovin, Marco
    Marino, Raffaele
    Vulpiani, Angelo
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 630
  • [3] CONVERGENCE OF NON-ERGODIC DYNAMICAL-SYSTEMS
    KALLENBERG, O
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (03): : 329 - 351
  • [4] Modes of a stellar system II: non-ergodic systems
    Lau, Jun Yan
    Binney, James
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (02) : 2562 - 2567
  • [5] Frozen in time: A review of non-ergodic physical systems
    Bossen, Aaron M.
    Mauro, John C.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, : 7939 - 7950
  • [6] Ergodic descriptors of non-ergodic stochastic processes
    Mangalam, Madhur
    Kelty-Stephen, Damian G.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [7] Ergodic and non-ergodic clustering of inertial particles
    Gustavsson, K.
    Mehlig, B.
    [J]. EPL, 2011, 96 (06)
  • [8] On non-ergodic asset prices
    Horst, Ulrich
    Wenzelburger, Jan
    [J]. ECONOMIC THEORY, 2008, 34 (02) : 207 - 234
  • [9] Non-ergodic laser cooling
    Cohen-Tannoudji, C
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2219 - 2221
  • [10] THE NON-ERGODIC JACKSON NETWORK
    GOODMAN, JB
    MASSEY, WA
    [J]. JOURNAL OF APPLIED PROBABILITY, 1984, 21 (04) : 860 - 869