Parametric inference for discretely observed non-ergodic diffusions

被引:25
|
作者
Jacod, Jean [1 ]
机构
[1] Univ Paris 06, UFR Math, F-75252 Paris, France
关键词
non-ergodic diffusion processes; parametric inference for diffusions;
D O I
10.3150/bj/1151525127
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a multidimensional diffusion process X whose drift and diffusion coefficients depend respectively on a parameter lambda and theta. This process is observed at n + 1 equally spaced times 0, Delta(n), 2 Delta(n),..., n Delta(n), and T-n = n Delta(n) denotes the length of the 'observation window'. We are interested in estimating lambda and/or theta. Under suitable smoothness and identifiability conditions, we exhibit estimators lambda(n) and theta(n) such that the variables root n(theta(n) - theta) and root T-n(lambda(n) -lambda) are tight for Delta(n) -> 0 and T-n -> infinity. When lambda is known, we can even drop the assumption that T-n -> infinity. These results hold without any kind of ergodicity or even recurrence assumption on the diffusion process.
引用
收藏
页码:383 / 401
页数:19
相关论文
共 50 条
  • [1] Parametric inference for discretely observed subordinate diffusions
    Guo, Weiwei
    Li, Lingfei
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (01) : 77 - 110
  • [2] Parametric inference for discretely observed subordinate diffusions
    Weiwei Guo
    Lingfei Li
    Statistical Inference for Stochastic Processes, 2019, 22 : 77 - 110
  • [3] Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient
    Guy, Romain
    Laredo, Catherine
    Vergu, Elisabeta
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 51 - 80
  • [4] Likelihood inference for discretely observed nonlinear diffusions
    Elerian, O
    Chib, S
    Shephard, N
    ECONOMETRICA, 2001, 69 (04) : 959 - 993
  • [5] Consistent nonparametric Bayesian inference for discretely observed scalar diffusions
    Van der Meulen, Frank
    Van Zanten, Harry
    BERNOULLI, 2013, 19 (01) : 44 - 63
  • [6] Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
    Chada, Neil K.
    Franks, Jordan
    Jasra, Ajay
    Law, Kody J.
    Vihola, Matti
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 763 - 787
  • [7] Consistency of Bayesian nonparametric inference for discretely observed jump diffusions
    Koskela, Jere
    Spano, Dario
    Jenkins, Paul A.
    BERNOULLI, 2019, 25 (03) : 2183 - 2205
  • [8] Parametric inference for hypoelliptic ergodic diffusions with full observations
    Anna Melnykova
    Statistical Inference for Stochastic Processes, 2020, 23 : 595 - 635
  • [9] LEAST SQUARES TYPE ESTIMATION FOR DISCRETELY OBSERVED NON-ERGODIC GAUSSIAN ORNSTEIN-UHLENBECK PROCESSES
    Khalifa ES-SEBAIY
    Fares ALAZEMI
    Mishari AL-FORAIH
    Acta Mathematica Scientia, 2019, 39 (04) : 989 - 1002
  • [10] Parameter estimation for discretely observed non-ergodic fractional Ornstein-Uhlenbeck processes of the second kind
    El Onsy, Brahim
    Es-Sebaiy, Khalifa
    Ndiaye, Djibril
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2018, 32 (03) : 545 - 558