Consistency of Bayesian nonparametric inference for discretely observed jump diffusions

被引:4
|
作者
Koskela, Jere [1 ]
Spano, Dario [1 ]
Jenkins, Paul A. [1 ,2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian statistics; Dirichlet mixture model prior; discrete net prior; jump diffusion; nonparametric inference; posterior consistency; STOCHASTIC DIFFERENTIAL-EQUATIONS; DRIFT ESTIMATION; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; SIMULATION; MODELS; DRIVEN; RISK;
D O I
10.3150/18-BEJ1050
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce verifiable criteria for weak posterior consistency of Bayesian nonparametric inference for jump diffusions with unit diffusion coefficient and uniformly Lipschitz drift and jump coefficients in arbitrary dimension. The criteria are expressed in terms of coefficients of the SDEs describing the process, and do not depend on intractable quantities such as transition densities. We also show that priors built from discrete nets, wavelet expansions, and Dirichlet mixture models satisfy our conditions. This generalises known results by incorporating jumps into previous work on unit diffusions with uniformly Lipschitz drift coefficients.
引用
收藏
页码:2183 / 2205
页数:23
相关论文
共 50 条
  • [1] Consistent nonparametric Bayesian inference for discretely observed scalar diffusions
    Van der Meulen, Frank
    Van Zanten, Harry
    BERNOULLI, 2013, 19 (01) : 44 - 63
  • [2] NONPARAMETRIC BAYESIAN POSTERIOR CONTRACTION RATES FOR DISCRETELY OBSERVED SCALAR DIFFUSIONS
    Nickl, Richard
    Soehl, Jakob
    ANNALS OF STATISTICS, 2017, 45 (04): : 1664 - 1693
  • [3] The nonparametric LAN expansion for discretely observed diffusions
    Wang, Sven
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 1329 - 1358
  • [4] Parametric inference for discretely observed subordinate diffusions
    Guo, Weiwei
    Li, Lingfei
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (01) : 77 - 110
  • [5] Parametric inference for discretely observed subordinate diffusions
    Weiwei Guo
    Lingfei Li
    Statistical Inference for Stochastic Processes, 2019, 22 : 77 - 110
  • [6] Likelihood inference for discretely observed nonlinear diffusions
    Elerian, O
    Chib, S
    Shephard, N
    ECONOMETRICA, 2001, 69 (04) : 959 - 993
  • [7] Nonparametric Bayesian inference for ergodic diffusions
    Panzar, Laura
    van Zanten, Harry
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (12) : 4193 - 4199
  • [8] Simulated likelihood estimators for discretely observed jump-diffusions
    Giesecke, K.
    Schwenkler, G.
    JOURNAL OF ECONOMETRICS, 2019, 213 (02) : 297 - 320
  • [9] NONPARAMETRIC BAYESIAN INFERENCE FOR REVERSIBLE MULTIDIMENSIONAL DIFFUSIONS
    Giordano, Matteo
    Ray, Kolyan
    ANNALS OF STATISTICS, 2022, 50 (05): : 2872 - 2898
  • [10] Parametric inference for discretely observed non-ergodic diffusions
    Jacod, Jean
    BERNOULLI, 2006, 12 (03) : 383 - 401