Observer design for a class of T-S fuzzy singular systems

被引:4
|
作者
Zhang, Yi [1 ,2 ]
Jin, Zhenghong [1 ,3 ]
Zhang, Qingling [3 ]
机构
[1] Shenyang Univ Technol, Sch Sci, Shenyang 110870, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Peoples R China
[3] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
observer design; T-S fuzzy singular systems; nonlinear singular systems; globally stable; EXTENDED LUENBERGER OBSERVER; SLIDING MODE APPROACH; STABILIZATION; STABILITY; DELAY;
D O I
10.1186/s13662-016-1052-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims at proposing an observer-based T-S fuzzy singular system. Firstly, we give a general model of nonlinear singular systems. We use the T-S fuzzy control method to form a T-S fuzzy singular system and we give the augmented system and compact form of a T-S fuzzy singular system. Secondly, we design a T-S fuzzy observer for the augmented system. In order to prove the parameters and state estimation errors are globally stable for the T-S fuzzy observer, we construct a Lyapunov function with T-S fuzzy form. Then we give the sufficient condition that the fuzzy control fuzzy system is globally exponentially stable and give the controller gains. Finally, we give two numerical examples for the observer, and the simulation results demonstrate the effectiveness of the observer for the nonlinear singular system, through a comparison of the literature (Zulfiqar et al. in Appl. Math. Model. 40(3):2301-2311, 2016).
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Event-Triggered Fault Detection Observer Design for T-S Fuzzy Systems
    Wang, Xiao-Lei
    Yang, Guang-Hong
    Zhang, Dianhua
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (09) : 2532 - 2542
  • [22] Observer Design using T-S Fuzzy Systems for pressure estimation in hydrostatic transmissions
    Schulte, Horst
    Gerland, Patrick
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 779 - +
  • [23] An interval observer design for uncertain nonlinear systems based on the T-S fuzzy model
    Menasria, Yamina
    Bouras, Hichem
    Debbache, Nasreddine
    [J]. ARCHIVES OF CONTROL SCIENCES, 2017, 27 (03): : 397 - 407
  • [24] Discussions on observer design of nonlinear positive systems via T-S fuzzy modeling
    Zhao, Xudong
    Wu, Tingting
    Zheng, Xiaolong
    Li, Ren
    [J]. NEUROCOMPUTING, 2015, 157 : 70 - 75
  • [25] Observer-based Robust Nonfragile H∞ Control for Uncertain T-S Fuzzy Singular Systems
    Xiong, Jun
    Chang, Xiao-Heng
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4233 - 4238
  • [26] Design the T-S fuzzy controller for a class of T-S fuzzy models via genetic algorithm
    Sun, CC
    Chung, HY
    Chang, WJ
    [J]. PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 278 - 283
  • [27] Observer-based H∞ fuzzy control design for T-S fuzzy systems with state delays
    Lin, Chong
    Wang, Qing-Guo
    Lee, Tong Heng
    He, Yong
    Chen, Bing
    [J]. AUTOMATICA, 2008, 44 (03) : 868 - 874
  • [28] Fuzzy state/disturbance observer design for T-S fuzzy systems with application to sensor fault estimation
    Gao, Zhiwei
    Shi, Xiaoyan
    Ding, Steven X.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (03): : 875 - 880
  • [29] T-S fuzzy control design for a class of nonlinear networked control systems
    Kim, Sung Hyun
    [J]. NONLINEAR DYNAMICS, 2013, 73 (1-2) : 17 - 27
  • [30] Quantized Stabilization of Networked T-S Fuzzy Singular Systems
    Lu, Renquan
    Huang, Mingwei
    Bai, Jiangjun
    Peng, Hui
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 6822 - 6825