BREGMAN DISTANCES AND KLEE SETS IN BANACH SPACES

被引:1
|
作者
Fang, Donghui [1 ,2 ]
Song, Wen [3 ]
Li, Chong
机构
[1] Jishou Univ, Sch Math & Comp Sci, Jishou 416000, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 6A期
关键词
Bregman farthest-point map; Klee set; D-maximally approximate compactness; Totally convex function; MONOTONE-OPERATORS; CONVEX-FUNCTIONS; FARTHEST POINTS; CHEBYSHEV SETS; OPTIMIZATION; PROJECTIONS; ALGORITHMS;
D O I
10.11650/twjm/1500405617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first present some sufficient conditions for the upper semicontinuity and/or the continuity of the Bregman farthest-point map Q(C)(g) and the relative farthest-point map S-C(g) for a nonempty D-maximally approximately compact subset C of a Banach space X. We next present certain sufficient conditions as well as equivalent conditions for a Klee set to be singleton in a Banach space X. Our results extend and/or improve the corresponding ones of [Bauschke, et al., J. Approx. Theory, 158 (2009), pp. 170-183] to infinite dimensional spaces.
引用
收藏
页码:1847 / 1865
页数:19
相关论文
共 50 条