Bregman Asymptotic Pointwise Nonexpansive Mappings in Banach Spaces

被引:1
|
作者
Pang, Chin-Tzong [1 ]
Naraghirad, Eskandar [2 ,3 ]
机构
[1] Yuan Ze Univ, Dept Informat Management, Chungli 32003, Taiwan
[2] Univ Yasuj, Dept Math, Yasuj 75918, Iran
[3] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
关键词
WEAK-CONVERGENCE; THEOREMS;
D O I
10.1155/2013/316813
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first introduce a new class of mappings called Bregman asymptotic pointwise nonexpansive mappings and investigate the existence and the approximation of fixed points of such mappings defined on a nonempty, bounded, closed, and convex subset C of a real Banach space E. Without using the original Opial property of a Banach space E, we prove weak convergence theorems for the sequences produced by generalized Mann and Ishikawa iteration processes for Bregman asymptotic pointwise nonexpansive mappings in a reflexive Banach space E. Our results are applicable in the function spaces L-p, where 1 < p < infinity is a real number.
引用
收藏
页数:14
相关论文
共 50 条