We first introduce a new class of mappings called Bregman asymptotic pointwise nonexpansive mappings and investigate the existence and the approximation of fixed points of such mappings defined on a nonempty, bounded, closed, and convex subset C of a real Banach space E. Without using the original Opial property of a Banach space E, we prove weak convergence theorems for the sequences produced by generalized Mann and Ishikawa iteration processes for Bregman asymptotic pointwise nonexpansive mappings in a reflexive Banach space E. Our results are applicable in the function spaces L-p, where 1 < p < infinity is a real number.
机构:
Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaUniv Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
Khamsi, M. A.
Kozlowski, W. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA