A lower bound on Voronoi diagram complexity

被引:10
|
作者
Aronov, B [1 ]
机构
[1] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
Voronoi diagram; computational geometry; computational complexity;
D O I
10.1016/S0020-0190(01)00336-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lower bound on Voronoi diagram complexity is presented. The Voronoi diagram is a classification of points of the ambient space according to the identity of the closest site or sites. Results provided evidence that the bound derived from envelope analysis is closer to the truth as the conjecture of Sharir does not hold.
引用
收藏
页码:183 / 185
页数:3
相关论文
共 50 条
  • [41] Voronoi diagram and microstructure of weldment
    Jungho Cho
    Journal of Mechanical Science and Technology, 2015, 29 : 371 - 374
  • [42] Voronoi Diagram and Microstructure of Weldment
    Cho, Jungho
    Choi, Min
    UBIQUITOUS COMPUTING APPLICATION AND WIRELESS SENSOR, 2015, 331 : 1 - 9
  • [43] The Voronoi Diagram of Three Lines
    Everett, Hazel
    Lazard, Daniel
    Lazard, Sylvain
    El Din, Mohab Safey
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (01) : 94 - 130
  • [44] The Voronoi Diagram of Three Lines
    Hazel Everett
    Daniel Lazard
    Sylvain Lazard
    Mohab Safey El Din
    Discrete & Computational Geometry, 2009, 42 : 94 - 130
  • [45] The Voronoi Diagram of Curved Objects
    Helmut Alt
    Otfried Cheong
    Antoine Vigneron
    Discrete & Computational Geometry, 2005, 34 : 439 - 453
  • [47] Voronoi diagram with visual restriction
    Fan, Chenglin
    Luo, Jun
    Wang, Wencheng
    Zhu, Binhai
    THEORETICAL COMPUTER SCIENCE, 2014, 532 : 31 - 39
  • [48] Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology
    Kim, DS
    Kim, DG
    Sugihara, K
    COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (06) : 541 - 562
  • [49] Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry
    Kim, DS
    Kim, DG
    Sugihara, K
    COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (06) : 563 - 585
  • [50] A Lower Bound for the Sample Complexity of Inverse Reinforcement Learning
    Komanduru, Abi
    Honorio, Jean
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139