A lower bound on Voronoi diagram complexity

被引:10
|
作者
Aronov, B [1 ]
机构
[1] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
Voronoi diagram; computational geometry; computational complexity;
D O I
10.1016/S0020-0190(01)00336-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lower bound on Voronoi diagram complexity is presented. The Voronoi diagram is a classification of points of the ambient space according to the identity of the closest site or sites. Results provided evidence that the bound derived from envelope analysis is closer to the truth as the conjecture of Sharir does not hold.
引用
收藏
页码:183 / 185
页数:3
相关论文
共 50 条
  • [31] Minkowski Complexity of Sets: An Easy Lower Bound
    Jukna, Stasys
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (08): : 749 - 753
  • [32] A Lower Bound on the Complexity of Testing Grained Distributions
    Goldreich, Oded
    Ron, Dana
    COMPUTATIONAL COMPLEXITY, 2023, 32 (02)
  • [33] Randomized complexity lower bound for arrangements and polyhedra
    Grigoriev, D
    DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (03) : 329 - 344
  • [34] Lower bound on complexity of optimization of continuous functions
    Calvin, JM
    JOURNAL OF COMPLEXITY, 2004, 20 (05) : 773 - 795
  • [35] An improved approach for assessing marine traffic complexity based on Voronoi diagram and complex network
    Sui, Zhongyi
    Wen, Yuanqiao
    Zhou, Chunhui
    Huang, Xi
    Zhang, Qi
    Liu, Zhehui
    Piera, Miquel Angel
    OCEAN ENGINEERING, 2022, 266
  • [36] A natural extension of the Voronoi diagram: The power diagram
    Hebert, M
    FASEB JOURNAL, 2003, 17 (04): : A349 - A349
  • [37] The Voronoi diagram of curved objects
    Alt, H
    Cheong, O
    Vigneron, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 34 (03) : 439 - 453
  • [38] The graph Voronoi diagram with applications
    Erwig, M
    NETWORKS, 2000, 36 (03) : 156 - 163
  • [39] Optical generation of Voronoi diagram
    Giavazzi, F.
    Cerbino, R.
    Mazzoni, S.
    Giglio, M.
    Vailati, A.
    OPTICS EXPRESS, 2008, 16 (07) : 4819 - 4823
  • [40] Voronoi diagram in the flow field
    Nishida, T
    Sugihara, K
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2003, 2906 : 26 - 35