Generalized Deutsch-Jozsa problem and the optimal quantum algorithm

被引:23
|
作者
Qiu, Daowen [1 ,2 ]
Zheng, Shenggen [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Inst Comp Sci Theory, Guangzhou 510006, Guangdong, Peoples R China
[2] Inst Super Tecn, Inst Telecomunicacoes, Dept Matemat, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
基金
中国国家自然科学基金;
关键词
BLACK-BOX COMPLEXITY; COMPUTATION; ADVANTAGE; AUTOMATA;
D O I
10.1103/PhysRevA.97.062331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Deutsch-Jozsa algorithm is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm. It was proposed by Deutsch and Jozsa in 1992 with improvements by Cleve, Ekert, Macchiavello, and Mosca in 1998. The Deutsch-Jozsa problem is a promise problem and we can equivalently describe it as a partial function DJ(n)(o) : {0,1}(n) -> {0, 1} defined as DJ(n)(o)(x) = 1 for vertical bar x vertical bar = n/2, DJ(n)(o) (x) = 0 for vertical bar x vertical bar = 0,n, and it is undefined for the rest of the cases, where n is even, and vertical bar x vertical bar is the Hamming weight of x. The optimal quantum algorithm needs only one query to compute DJ(n)(o) but the classical deterministic algorithm requires 2(n-1) + 1 queries to compute it in the worse case. In this article, we generalize the Deutsch-Jozsa problem as DJ(n)(k)(x) = 1 for vertical bar x vertical bar = n/2, DJ(n)(k)(x) = 0 for vertical bar x vertical bar in the set {0,1, . . . , k, n - k, n - k +1, . . . , n}, and it is undefined for the rest of the cases, where 0 <= k <= n/2. In particular, we give and prove an optimal exact quantum query algorithm with complexity k + 1 for computing the generalized Deutsch-Jozsa problem DJ(n)(k). It is clear that the case of k = 0 is in accordance with the Deutsch-Jozsa problem. Also, we give a method for finding the approximate and exact degrees of symmetric partial Boolean functions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] EXTRACTION OF VALUE OF FUNCTION f(x) IN DEUTSCH ALGORITHM AND DEUTSCH-JOZSA ALGORITHM
    Deng, Li
    Chen, Aixi
    Xu, Yanqiu
    Zhou, Suyun
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (03) : 635 - 643
  • [42] Scheme for implementing the Deutsch-Jozsa algorithm in cavity QED
    Zheng, SB
    PHYSICAL REVIEW A, 2004, 70 (03): : 034301 - 1
  • [43] Proposal for Implementing the Three-Qubit Refined Deutsch-Jozsa Quantum Algorithm
    Su, Qi-Ping
    Liu, Man
    Yang, Chui-Ping
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (08)
  • [44] Deutsch与Deutsch-Jozsa算法简介
    黄蕴琦
    叶泽坤
    陈韦江
    电脑知识与技术, 2017, 13 (35) : 149 - 152
  • [45] Scheme for implementing Deutsch-Jozsa algorithm using superconducting quantum interference devices
    Ma Chi
    Zhang Shi-Jun
    Ye Liu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (02) : 373 - 376
  • [46] Implementation of the Deutsch-Jozsa algorithm with Josephson charge qubits
    Siewert, J
    Fazio, R
    JOURNAL OF MODERN OPTICS, 2002, 49 (08) : 1245 - 1254
  • [47] Unifying parameter estimation and the Deutsch-Jozsa algorithm for continuous variables
    Zwierz, Marcin
    Perez-Delgado, Carlos A.
    Kok, Pieter
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [48] Adiabatic Deutsch-Jozsa Problem Solved by Modifying the Initial Hamiltonian
    Sun Jie
    Lu Song-Feng
    Liu Fang
    Zhou Qing
    Zhang Zhi-Gang
    CHINESE PHYSICS LETTERS, 2014, 31 (07)
  • [49] Implementation of the refined Deutsch-Jozsa algorithm on a three-bit NMR quantum computer
    Kim, Jaehyun
    Lee, Jae-Seung
    Lee, Soonchil
    Cheong, Chaejoon
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (02): : 022312 - 022311
  • [50] Experimental demonstration of the Deutsch-Jozsa algorithm in homonuclear multispin systems
    Wu, Zhen
    Li, Jun
    Zheng, Wenqiang
    Luo, Jun
    Feng, Mang
    Peng, Xinhua
    PHYSICAL REVIEW A, 2011, 84 (04):