Generalized Deutsch-Jozsa problem and the optimal quantum algorithm

被引:23
|
作者
Qiu, Daowen [1 ,2 ]
Zheng, Shenggen [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Inst Comp Sci Theory, Guangzhou 510006, Guangdong, Peoples R China
[2] Inst Super Tecn, Inst Telecomunicacoes, Dept Matemat, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
基金
中国国家自然科学基金;
关键词
BLACK-BOX COMPLEXITY; COMPUTATION; ADVANTAGE; AUTOMATA;
D O I
10.1103/PhysRevA.97.062331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Deutsch-Jozsa algorithm is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm. It was proposed by Deutsch and Jozsa in 1992 with improvements by Cleve, Ekert, Macchiavello, and Mosca in 1998. The Deutsch-Jozsa problem is a promise problem and we can equivalently describe it as a partial function DJ(n)(o) : {0,1}(n) -> {0, 1} defined as DJ(n)(o)(x) = 1 for vertical bar x vertical bar = n/2, DJ(n)(o) (x) = 0 for vertical bar x vertical bar = 0,n, and it is undefined for the rest of the cases, where n is even, and vertical bar x vertical bar is the Hamming weight of x. The optimal quantum algorithm needs only one query to compute DJ(n)(o) but the classical deterministic algorithm requires 2(n-1) + 1 queries to compute it in the worse case. In this article, we generalize the Deutsch-Jozsa problem as DJ(n)(k)(x) = 1 for vertical bar x vertical bar = n/2, DJ(n)(k)(x) = 0 for vertical bar x vertical bar in the set {0,1, . . . , k, n - k, n - k +1, . . . , n}, and it is undefined for the rest of the cases, where 0 <= k <= n/2. In particular, we give and prove an optimal exact quantum query algorithm with complexity k + 1 for computing the generalized Deutsch-Jozsa problem DJ(n)(k). It is clear that the case of k = 0 is in accordance with the Deutsch-Jozsa problem. Also, we give a method for finding the approximate and exact degrees of symmetric partial Boolean functions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A different Deutsch-Jozsa
    Bera, Debajyoti
    QUANTUM INFORMATION PROCESSING, 2015, 14 (06) : 1777 - 1785
  • [22] Implementing Deutsch-Jozsa algorithm in cavity QED
    Dong Ping
    Song Wei
    Cao Zhuo-Liang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (02) : 241 - 243
  • [23] An Application of the Deutsch-Jozsa Algorithm to Formal Languages and the Word Problem in Groups
    Batty, Michael
    Casaccino, Andrea
    Duncan, Andrew J.
    Rees, Sarah
    Severini, Simone
    THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY, 2008, 5106 : 57 - +
  • [24] Implementing the Deutsch-Jozsa algorithm with macroscopic ensembles
    Semenenko, Henry
    Byrnes, Tim
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [25] Simulation of NMR implementation of Deutsch-Jozsa Algorithm
    Chappidi, Varun
    Ganguly, Soumya
    SOUVENIR OF THE 2014 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2014, : 838 - 843
  • [26] Non-local quantum functions and the distributed Deutsch-Jozsa algorithm
    Tanasescu, Andrei
    Mina, Mihai-Zicu
    Popescu, Pantelimon George
    PHYSICS LETTERS A, 2019, 383 (18) : 2168 - 2171
  • [27] Implementing Deutsch-Jozsa Algorithm in Cavity QED
    DONG Ping
    Communications in Theoretical Physics, 2006, 46 (08) : 241 - 243
  • [28] Quantum Audio Steganalysis Based on Quantum Fourier Transform and Deutsch-Jozsa Algorithm
    Larki, Sanaz Norouzi
    Mosleh, Mohammad
    Kheyrandish, Mohammad
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (04) : 2235 - 2258
  • [29] Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer
    Gulde, S
    Riebe, M
    Lancaster, GPT
    Becher, C
    Eschner, J
    Häffner, H
    Schmidt-Kaler, F
    Chuang, IL
    Blatt, R
    NATURE, 2003, 421 (6918) : 48 - 50
  • [30] Implementation of the Deutsch-Jozsa algorithm violates nonlocal realism
    K. Nagata
    The European Physical Journal D, 2010, 56 : 441 - 444