AN INVERSE PROBLEM OF CALIBRATING VOLATILITY IN JUMP-DIFFUSION OPTION PRICING MODELS1

被引:0
|
作者
Jin, Chang [1 ]
Ma, Qing-Hua [1 ]
Xu, Zuo-Liang [1 ]
机构
[1] Renmin Univ China, Beijing 100872, Peoples R China
关键词
Gauss-Newton method; jump diffusion model; relative entropy; regularization; volatility;
D O I
10.1142/9789814327862_0009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper mainly concerns calibrating volatility from a jump diffusion model to a finite set of observed option pricing. We proposed a regularization algorithm based on Cont and Tankov's relative entropy regularization to solve this problem. We determine the regularization parameter using quasi-optimality criterion with original data error level unknown. Iteratively Guass-Newton method is developed for solving the unconstrained optimization problem. Finally, the theoretical results are illustrated by numerical experiments.
引用
收藏
页码:102 / 112
页数:11
相关论文
共 50 条
  • [41] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [42] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344
  • [43] Analysis of a jump-diffusion option pricing model with serially correlated jump sizes
    Lin, Xenos Chang-Shuo
    Miao, Daniel Wei-Chung
    Chao, Wan-Ling
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (04) : 953 - 979
  • [44] Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models
    Balajewicz, Maciej
    Toivanen, Jari
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 20 : 198 - 204
  • [45] Pricing Average and Spread Options Under Local-Stochastic Volatility Jump-Diffusion Models
    Shiraya, Kenichiro
    Takahashi, Akihiko
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 303 - 333
  • [46] Pricing options in jump-diffusion models: An extrapolation approach
    Feng, Liming
    Linetsky, Vadim
    [J]. OPERATIONS RESEARCH, 2008, 56 (02) : 304 - 325
  • [47] An inverse problem of determining the implied volatility in option pricing
    Deng, Zui-Cha
    Yu, Jian-Ning
    Yang, Liu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 16 - 31
  • [48] Numerical approximation for options pricing of a stochastic volatility jump-diffusion model
    Aboulaich, R.
    Baghery, F.
    Jraifi, A.
    [J]. 1600, Centre for Environment Social and Economic Research, Post Box No. 113, Roorkee, 247667, India (50): : 69 - 82
  • [49] SECOND-ORDER FINITE DIFFERENCE METHOD FOR OPTION PRICING UNDER JUMP-DIFFUSION MODELS
    Kwon, Yonghoon
    Lee, Younhee
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2598 - 2617
  • [50] Risk-minimizing option pricing under a Markov-modulated jump-diffusion model with stochastic volatility
    Su, Xiaonan
    Wang, Wensheng
    Hwang, Kyo-Shin
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (10) : 1777 - 1785