Risk-minimizing option pricing under a Markov-modulated jump-diffusion model with stochastic volatility

被引:8
|
作者
Su, Xiaonan [1 ]
Wang, Wensheng [2 ]
Hwang, Kyo-Shin [3 ]
机构
[1] Nanjing Audit Univ, Sch Math & Stat, Nanjing 211815, Jiangsu, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[3] Gyeongsang Natl Univ, Res Inst Nat Sci, Jinju 660701, South Korea
关键词
Regime switching; Jump-diffusion processes; Stochastic volatility; Local risk minimization; Option pricing; INFORMATION;
D O I
10.1016/j.spl.2012.05.026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we deal with the pricing of European style options when the dynamics of the risky underlying asset are driven by a Markov-modulated jump diffusion with stochastic volatility. We investigate the Radon-Nikodym derivative for the minimal martingale measure and a partial differential equation approach for pricing European options. An optimal hedging strategy in terms of local risk minimization is obtained. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1777 / 1785
页数:9
相关论文
共 50 条
  • [1] Option pricing under a Markov-modulated Merton jump-diffusion dividend
    Shan, Yuanchuang
    Yi, Haoran
    Zhang, Xuekang
    Shu, Huisheng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (05) : 1490 - 1506
  • [2] Variance Swap Pricing under Markov-Modulated Jump-Diffusion Model
    Liu, Shican
    Yang, Yu
    Zhang, Hu
    Wu, Yonghong
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [3] Pricing options under a generalized Markov-modulated jump-diffusion model
    Elliott, Robert J.
    Siu, Tak Kuen
    Chan, Leunglung
    Lau, John W.
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (04) : 821 - 843
  • [4] Equilibrium Asset and Option Pricing under Jump-Diffusion Model with Stochastic Volatility
    Ruan, Xinfeng
    Zhu, Wenli
    Li, Shuang
    Huang, Jiexiang
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [5] PRICING VULNERABLE OPTIONS UNDER A MARKOV-MODULATED JUMP-DIFFUSION MODEL WITH FIRE SALES
    Yang, Qing-Qing
    Ching, Wai-Ki
    He, Wanhua
    Siu, Tak-Kuen
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (01) : 293 - 318
  • [6] Option Pricing under Two-Factor Stochastic Volatility Jump-Diffusion Model
    Deng, Guohe
    [J]. COMPLEXITY, 2020, 2020
  • [7] Exact and approximated option pricing in a stochastic volatility jump-diffusion model
    D'Ippoliti, Fernanda
    Moretto, Enrico
    Pasquali, Sara
    Trivellato, Barbara
    [J]. MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, 2010, : 133 - +
  • [8] Option Pricing under a Mean Reverting Process with Jump-Diffusion and Jump Stochastic Volatility
    Makate, Nonthiya
    Sattayatham, Pairote
    [J]. THAI JOURNAL OF MATHEMATICS, 2012, 10 (03): : 651 - 660
  • [9] Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility
    Chang, Ying
    Wang, Yiming
    Zhang, Sumei
    [J]. MATHEMATICS, 2021, 9 (02) : 1 - 10
  • [10] Pricing of volatility derivatives in a Heston-CIR model with Markov-modulated jump diffusion
    Yang, Yu
    Liu, Shican
    Wu, Yonghong
    Wiwatanapataphee, Benchawan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 393