Option pricing under a Markov-modulated Merton jump-diffusion dividend

被引:2
|
作者
Shan, Yuanchuang [1 ]
Yi, Haoran [1 ]
Zhang, Xuekang [2 ]
Shu, Huisheng [3 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai, Peoples R China
[2] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu, Peoples R China
[3] Donghua Univ, Coll Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Option pricing; discrete dividend; Markov-modulated; Esscher transform; risk-neutral measure;
D O I
10.1080/03610926.2021.1928205
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the valuation of European option is investigated when the discrete dividends are described by Markov-modulated Merton jump-diffusion process. According to the dividend discount theory, we regard the stock price as the net present value of all future dividends. The regime switching Esscher transform is applied to determine a risk-neutral measure. The closed form solution of European option is obtained under the condition that the dividend payments are announced in advance. Numerical simulations for the European call option prices are provided.
引用
收藏
页码:1490 / 1506
页数:17
相关论文
共 50 条
  • [1] Variance Swap Pricing under Markov-Modulated Jump-Diffusion Model
    Liu, Shican
    Yang, Yu
    Zhang, Hu
    Wu, Yonghong
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [2] Pricing options under a generalized Markov-modulated jump-diffusion model
    Elliott, Robert J.
    Siu, Tak Kuen
    Chan, Leunglung
    Lau, John W.
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (04) : 821 - 843
  • [3] Risk-minimizing option pricing under a Markov-modulated jump-diffusion model with stochastic volatility
    Su, Xiaonan
    Wang, Wensheng
    Hwang, Kyo-Shin
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (10) : 1777 - 1785
  • [4] PRICING VULNERABLE OPTIONS UNDER A MARKOV-MODULATED JUMP-DIFFUSION MODEL WITH FIRE SALES
    Yang, Qing-Qing
    Ching, Wai-Ki
    He, Wanhua
    Siu, Tak-Kuen
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (01) : 293 - 318
  • [5] Pricing vulnerable options under cross-asset markov-modulated jump-diffusion dynamics
    Lian, Yu -Min
    Chen, Jun -Home
    [J]. INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2024, 94
  • [6] A Markov-modulated jump-diffusion risk model with randomized observation periods and threshold dividend strategy
    Chen, Xu
    Xiao, Ting
    Yang, Xiang-qun
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2014, 54 : 76 - 83
  • [7] Markov-modulated jump-diffusions for currency option pricing
    Bo, Lijun
    Wang, Yongjin
    Yang, Xuewei
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (03): : 461 - 469
  • [8] Optimal Investment for the Insurers in Markov-Modulated Jump-Diffusion Models
    Jinzhi Li
    Haiying Liu
    [J]. Computational Economics, 2015, 46 : 143 - 156
  • [9] Optimal Investment for the Insurers in Markov-Modulated Jump-Diffusion Models
    Li, Jinzhi
    Liu, Haiying
    [J]. COMPUTATIONAL ECONOMICS, 2015, 46 (01) : 143 - 156
  • [10] A Fuzzy Jump-Diffusion Option Pricing Model Based on the Merton Formula
    Mandal, Satrajit
    Bhattacharya, Sujoy
    [J]. ASIA-PACIFIC FINANCIAL MARKETS, 2024,