Optimal Investment for the Insurers in Markov-Modulated Jump-Diffusion Models

被引:2
|
作者
Li, Jinzhi [1 ]
Liu, Haiying [2 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Ocean Univ China, Law & Polit Sch, Qingdao 266100, Peoples R China
关键词
Markov-modulated jump-diffusion process; Portfolio optimization; Hamilton-Jacobi-Bellman equations; CARA utility function; STOCHASTIC VOLATILITY; OPTIONS;
D O I
10.1007/s10614-014-9454-7
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper investigates the optimal portfolio investment policies of an insurer with Markov-modulated jump-diffusion risk process. Assume that there are two asset available for the insurer: a risk-free asset and a risky asset. The market interest rate, the drift and the volatility of the risky asset, and the premium rate of the insurer and claim arrival intensity switch over time according to transitions of the Markov chain. Given an insurer maximizing utility from terminal wealth, we present a verification result for portfolio problems, and obtain the explicit forms of the optimal policy with CARA utility function. And we conduct Monte Carlo simulation and perform a sensitivity analysis of the optimal asset allocation strategies and the terminal expected utility.
引用
收藏
页码:143 / 156
页数:14
相关论文
共 50 条
  • [1] Optimal Investment for the Insurers in Markov-Modulated Jump-Diffusion Models
    Jinzhi Li
    Haiying Liu
    Computational Economics, 2015, 46 : 143 - 156
  • [2] Variance Swap Pricing under Markov-Modulated Jump-Diffusion Model
    Liu, Shican
    Yang, Yu
    Zhang, Hu
    Wu, Yonghong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [3] Option pricing under a Markov-modulated Merton jump-diffusion dividend
    Shan, Yuanchuang
    Yi, Haoran
    Zhang, Xuekang
    Shu, Huisheng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (05) : 1490 - 1506
  • [4] Pricing options under a generalized Markov-modulated jump-diffusion model
    Elliott, Robert J.
    Siu, Tak Kuen
    Chan, Leunglung
    Lau, John W.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (04) : 821 - 843
  • [5] Optimal investment in multidimensional Markov-modulated affine models
    Neykova D.
    Escobar M.
    Zagst R.
    Annals of Finance, 2015, 11 (3-4) : 503 - 530
  • [6] Gambler's ruin problem in a Markov-modulated jump-diffusion risk model
    Liu, Yuxuan
    Jiang, Zhengjun
    Qu, Yixin
    SCANDINAVIAN ACTUARIAL JOURNAL, 2022, 2022 (08) : 682 - 694
  • [7] Numerical Methods for Optimal Dividend Payment and Investment Strategies of Markov-Modulated Jump Diffusion Models with Regular and Singular Controls
    Jin, Zhuo
    Yin, G.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 246 - 271
  • [8] Markov-modulated jump-diffusion models for the short rate: Pricing of zero coupon bonds and convexity adjustment
    Lopez, Oscar
    Oleaga, Gerardo
    Sanchez, Alejandra
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 395
  • [9] Numerical Methods for Optimal Dividend Payment and Investment Strategies of Markov-Modulated Jump Diffusion Models with Regular and Singular Controls
    Zhuo Jin
    G. Yin
    Journal of Optimization Theory and Applications, 2013, 159 : 246 - 271
  • [10] PRICING VULNERABLE OPTIONS UNDER A MARKOV-MODULATED JUMP-DIFFUSION MODEL WITH FIRE SALES
    Yang, Qing-Qing
    Ching, Wai-Ki
    He, Wanhua
    Siu, Tak-Kuen
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (01) : 293 - 318