Optimal Investment for the Insurers in Markov-Modulated Jump-Diffusion Models

被引:2
|
作者
Li, Jinzhi [1 ]
Liu, Haiying [2 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Ocean Univ China, Law & Polit Sch, Qingdao 266100, Peoples R China
关键词
Markov-modulated jump-diffusion process; Portfolio optimization; Hamilton-Jacobi-Bellman equations; CARA utility function; STOCHASTIC VOLATILITY; OPTIONS;
D O I
10.1007/s10614-014-9454-7
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper investigates the optimal portfolio investment policies of an insurer with Markov-modulated jump-diffusion risk process. Assume that there are two asset available for the insurer: a risk-free asset and a risky asset. The market interest rate, the drift and the volatility of the risky asset, and the premium rate of the insurer and claim arrival intensity switch over time according to transitions of the Markov chain. Given an insurer maximizing utility from terminal wealth, we present a verification result for portfolio problems, and obtain the explicit forms of the optimal policy with CARA utility function. And we conduct Monte Carlo simulation and perform a sensitivity analysis of the optimal asset allocation strategies and the terminal expected utility.
引用
收藏
页码:143 / 156
页数:14
相关论文
共 50 条
  • [41] Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy
    Chiang M.-H.
    Li C.-Y.
    Chen S.-N.
    Review of Quantitative Finance and Accounting, 2016, 46 (3) : 459 - 482
  • [42] Markov-modulated jump-diffusions for currency option pricing
    Bo, Lijun
    Wang, Yongjin
    Yang, Xuewei
    INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (03): : 461 - 469
  • [43] Risk measures for derivatives with Markov-modulated pure jump processes
    Elliott R.J.
    Chan L.
    Siu T.K.
    Asia-Pacific Financial Markets, 2006, 13 (2) : 129 - 149
  • [44] Comparison results for Markov-modulated recursive models
    Bauerle, N
    Rieder, U
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 1997, 11 (02) : 203 - 217
  • [45] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [46] On the functional estimation of jump-diffusion models
    Bandi, FM
    Nguyen, TH
    JOURNAL OF ECONOMETRICS, 2003, 116 (1-2) : 293 - 328
  • [47] COMPUTATION OF GREEKS FOR JUMP-DIFFUSION MODELS
    Eddahbi, M'Hamed
    Ben Cherif, Sidi Mohamed Lalaoui
    Nasroallah, Abdelaziz
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (06)
  • [48] Infinite horizon optimal control of mean-field delay system with semi-Markov modulated jump-diffusion processes
    Deepa, R.
    Muthukumar, P.
    JOURNAL OF ANALYSIS, 2019, 27 (02): : 623 - 641
  • [49] Infinite horizon optimal control of mean-field delay system with semi-Markov modulated jump-diffusion processes
    R. Deepa
    P. Muthukumar
    The Journal of Analysis, 2019, 27 : 623 - 641
  • [50] Ruin problems in Markov-modulated risk models
    Dickson, David C. M.
    Qazvini, Marjan
    ANNALS OF ACTUARIAL SCIENCE, 2018, 12 (01) : 23 - 48