On the functional estimation of jump-diffusion models

被引:93
|
作者
Bandi, FM
Nguyen, TH
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
[2] Alpha Simplex Grp, Cambridge Ctr 1, Cambridge, MA 02142 USA
关键词
Harris recurrence; jump-diffusion models; nonparametric estimation;
D O I
10.1016/S0304-4076(03)00110-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide a general asymptotic theory for the fully functional estimates of the infinitesimal moments of continuous-time models with discontinuous sample paths of the jump-diffusion type. Minimal requirements are placed on the dynamic properties of the underlying jump-diffusion process, i.e., stationarity is not required. Our theoretical framework justifies consistent (in a statistical sense) nonparametric extraction of the parameters and functions that drive the dynamic evolution of the process of interest (i.e., the potentially nonaffine and level-dependent intensity of the jump arrival being an example) from the estimated infinitesimal conditional moments as suggested in Johannes, 2003 (The statistical and economic role of jumps in continuous-time interest rate models, Journal of Finance, forthcoming). (C) 2003 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:293 / 328
页数:36
相关论文
共 50 条
  • [2] Reweighted Nadaraya-Watson estimation of jump-diffusion models
    Hanif, Muhammad
    Wang HanChao
    Lin ZhengYan
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (05) : 1005 - 1016
  • [3] Reweighted Nadaraya-Watson estimation of jump-diffusion models
    HANIF Muhammad
    Science China Mathematics, 2012, 55 (05) : 1005 - 1016
  • [4] Reweighted Nadaraya-Watson estimation of jump-diffusion models
    Muhammad Hanif
    HanChao Wang
    ZhengYan Lin
    Science China Mathematics, 2012, 55 : 1005 - 1016
  • [5] A nonparametric approach to the estimation of jump-diffusion models with asymmetric kernels
    Hanif, Muhammad
    COGENT MATHEMATICS, 2016, 3
  • [6] Convoluted smoothed kernel estimation for drift coefficients in jump-diffusion models
    Liu, Naiqi
    Song, Kunyang
    Song, Yuping
    Wang, Xiaochen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (21) : 7354 - 7389
  • [7] Maximum likelihood estimation of stock volatility using jump-diffusion models
    Chekenya, Nixon S.
    COGENT ECONOMICS & FINANCE, 2019, 7 (01):
  • [8] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [9] Realized range-based threshold estimation for jump-diffusion models
    Cai, Jingwei
    Chen, Ping
    Mei, Xia
    Ji, Xiao
    IAENG International Journal of Applied Mathematics, 2015, 45 (04) : 293 - 299
  • [10] COMPUTATION OF GREEKS FOR JUMP-DIFFUSION MODELS
    Eddahbi, M'Hamed
    Ben Cherif, Sidi Mohamed Lalaoui
    Nasroallah, Abdelaziz
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (06)