On the functional estimation of jump-diffusion models

被引:93
|
作者
Bandi, FM
Nguyen, TH
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
[2] Alpha Simplex Grp, Cambridge Ctr 1, Cambridge, MA 02142 USA
关键词
Harris recurrence; jump-diffusion models; nonparametric estimation;
D O I
10.1016/S0304-4076(03)00110-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide a general asymptotic theory for the fully functional estimates of the infinitesimal moments of continuous-time models with discontinuous sample paths of the jump-diffusion type. Minimal requirements are placed on the dynamic properties of the underlying jump-diffusion process, i.e., stationarity is not required. Our theoretical framework justifies consistent (in a statistical sense) nonparametric extraction of the parameters and functions that drive the dynamic evolution of the process of interest (i.e., the potentially nonaffine and level-dependent intensity of the jump arrival being an example) from the estimated infinitesimal conditional moments as suggested in Johannes, 2003 (The statistical and economic role of jumps in continuous-time interest rate models, Journal of Finance, forthcoming). (C) 2003 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:293 / 328
页数:36
相关论文
共 50 条
  • [41] System Uncertainty and Statistical Detection for Jump-diffusion Models
    Huang, Jianhui
    Li, Xun
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (03) : 697 - 702
  • [42] Ensemble Methods for Jump-Diffusion Models of Power Prices
    Mari, Carlo
    Baldassari, Cristiano
    ENERGIES, 2021, 14 (08)
  • [43] Asymptotic behaviors of stochastic epidemic models with jump-diffusion
    Nguyen Thanh Dieu
    Fugo, Takasu
    Nguyen Huu Du
    APPLIED MATHEMATICAL MODELLING, 2020, 86 : 259 - 270
  • [44] Pricing options in jump-diffusion models: An extrapolation approach
    Feng, Liming
    Linetsky, Vadim
    OPERATIONS RESEARCH, 2008, 56 (02) : 304 - 325
  • [45] On the calibration of local jump-diffusion asset price models
    S. Kindermann
    P. A. Mayer
    Finance and Stochastics, 2011, 15 : 685 - 724
  • [46] Numerical solution of jump-diffusion LIBOR market models
    Paul Glasserman
    Nicolas Merener
    Finance and Stochastics, 2003, 7 : 1 - 27
  • [47] Efficient Bayesian Inference on Asymmetric Jump-Diffusion Models
    Park, Taeyoung
    Lee, Youngeun
    KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (06) : 959 - 973
  • [48] On the construction of non-affine jump-diffusion models
    Gapeev, Pavel V.
    Stoev, Yavor I.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (05) : 900 - 918
  • [49] Approximating GARCH-jump models, jump-diffusion processes, and option pricing
    Duan, JC
    Ritchken, P
    Sun, ZQ
    MATHEMATICAL FINANCE, 2006, 16 (01) : 21 - 52
  • [50] Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models
    Zimmermann, Nils E. R.
    Hannah, Daniel C.
    Rong, Ziqin
    Liu, Miao
    Ceder, Gerbrand
    Haranczyk, Maciej
    Persson, Kristin A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (03): : 628 - 634