On the functional estimation of jump-diffusion models

被引:93
|
作者
Bandi, FM
Nguyen, TH
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
[2] Alpha Simplex Grp, Cambridge Ctr 1, Cambridge, MA 02142 USA
关键词
Harris recurrence; jump-diffusion models; nonparametric estimation;
D O I
10.1016/S0304-4076(03)00110-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide a general asymptotic theory for the fully functional estimates of the infinitesimal moments of continuous-time models with discontinuous sample paths of the jump-diffusion type. Minimal requirements are placed on the dynamic properties of the underlying jump-diffusion process, i.e., stationarity is not required. Our theoretical framework justifies consistent (in a statistical sense) nonparametric extraction of the parameters and functions that drive the dynamic evolution of the process of interest (i.e., the potentially nonaffine and level-dependent intensity of the jump arrival being an example) from the estimated infinitesimal conditional moments as suggested in Johannes, 2003 (The statistical and economic role of jumps in continuous-time interest rate models, Journal of Finance, forthcoming). (C) 2003 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:293 / 328
页数:36
相关论文
共 50 条
  • [21] A splitting strategy for the calibration of jump-diffusion models
    Vinicius V. L. Albani
    Jorge P. Zubelli
    Finance and Stochastics, 2020, 24 : 677 - 722
  • [22] Portfolio problems based on jump-diffusion models
    Liu, Tiantian
    Zhao, Jun
    Zhao, Peibiao
    FILOMAT, 2012, 26 (03) : 573 - 583
  • [23] Wealth optimization models on jump-diffusion model
    Zheng, Yingchun
    Yang, Yunfeng
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (01) : 201 - 212
  • [24] A splitting strategy for the calibration of jump-diffusion models
    Albani, Vinicius V. L.
    Zubelli, Jorge P.
    FINANCE AND STOCHASTICS, 2020, 24 (03) : 677 - 722
  • [25] Symbolic models for retarded jump-diffusion systems
    Jagtap, Pushpak
    Zamani, Majid
    AUTOMATICA, 2020, 111
  • [26] Saddlepoint approximations for affine jump-diffusion models
    Glasserman, Paul
    Kim, Kyoung-Kuk
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2009, 33 (01): : 15 - 36
  • [27] Perpetual convertible bonds in jump-diffusion models
    Gapeev, Pavel V.
    Kuehn, Christoph
    STATISTICS & RISK MODELING, 2005, 23 (01) : 15 - 31
  • [28] Pricing Cliquet options in jump-diffusion models
    Yan, HF
    Yang, JQ
    Liu, LM
    STOCHASTIC MODELS, 2005, 21 (04) : 875 - 884
  • [29] Jump-diffusion processes as models for neuronal activity
    Giraudo, MT
    Sacerdote, L
    BIOSYSTEMS, 1997, 40 (1-2) : 75 - 82
  • [30] Local M-estimation for jump-diffusion processes
    Wang, Yunyan
    Zhang, Lixin
    Tang, Mingtian
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1273 - 1284