Robinson manifolds and the shear-free condition

被引:11
|
作者
Trautman, A [1 ]
机构
[1] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
来源
关键词
D O I
10.1142/S0217751X02011709
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This paper is a short summary of the talk on Robinson manifolds and Cauchy-Riemann spaces given at Journees Relativistes 2001 in Dublin. It recalls two generalizations of the definition of shear-free congruences of null geodesics. These generalizations are equivalent in dimension 4, but not in higher dimensions, as illustrated on an example described by Ivor Robinson during that conference.
引用
收藏
页码:2735 / 2737
页数:3
相关论文
共 50 条
  • [1] SHEAR-FREE CONDITION IN ROBINSON THEOREM
    BAMPI, F
    GENERAL RELATIVITY AND GRAVITATION, 1978, 9 (09) : 779 - 782
  • [2] On the stability of the shear-free condition
    Herrera, L.
    Di Prisco, A.
    Ospino, J.
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (07) : 1585 - 1599
  • [3] THE SPACE OF LEAVES OF A SHEAR-FREE CONGRUENCE, MULTIPOLE EXPANSIONS, AND ROBINSON THEOREM
    BAILEY, TN
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (06) : 1465 - 1469
  • [4] On a particular type of product manifolds and shear-free cosmological models
    Guerses, Metin
    Plaue, Matthias
    Scherfner, Mike
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (17)
  • [5] Shear-free condition and dynamical instability in f (R, T) gravity
    Noureen, Ifra
    Zubair, M.
    Bhatti, A. A.
    Abbas, G.
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (07):
  • [6] Shear-free condition and dynamical instability in f(R, T) gravity
    Ifra Noureen
    M. Zubair
    A. A. Bhatti
    G. Abbas
    The European Physical Journal C, 2015, 75
  • [7] SHEAR-FREE GRAVITATIONAL COLLAPSE
    GLASS, EN
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (07) : 1508 - 1513
  • [8] SHEAR-FREE GRAVITATIONAL RADIATION
    DERRY, L
    ISAACSON, R
    WINICOUR, J
    PHYSICAL REVIEW, 1969, 185 (05): : 1647 - +
  • [9] Shear-free rotating inflation
    Obukhov, YN
    Chrobok, T
    Scherfner, M
    PHYSICAL REVIEW D, 2002, 66 (04):
  • [10] The shear-free condition and constant-mean-curvature hyperboloidal initial data
    Allen, Paul T.
    Isenberg, James
    Lee, John M.
    Allen, Iva Stavrov
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (11)