Robinson manifolds and the shear-free condition

被引:11
|
作者
Trautman, A [1 ]
机构
[1] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
来源
关键词
D O I
10.1142/S0217751X02011709
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This paper is a short summary of the talk on Robinson manifolds and Cauchy-Riemann spaces given at Journees Relativistes 2001 in Dublin. It recalls two generalizations of the definition of shear-free congruences of null geodesics. These generalizations are equivalent in dimension 4, but not in higher dimensions, as illustrated on an example described by Ivor Robinson during that conference.
引用
收藏
页码:2735 / 2737
页数:3
相关论文
共 50 条
  • [21] The shear-free perfect fluid conjecture
    Van den Bergh, N
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (01) : 117 - 129
  • [22] Shear-free turbulence near a wall
    Thermo + Fluid Dynamics, Chalmers Univ of Technology, Goteborg S-41296, Sweden
    Journal of Fluid Mechanics, 1997, 338 : 363 - 385
  • [23] Shear-free turbulence near a flat free surface
    Walker, DT
    Leighton, RI
    GarzaRios, LO
    JOURNAL OF FLUID MECHANICS, 1996, 320 : 19 - 51
  • [24] Radiating shear-free gravitational collapse with charge
    G. Pinheiro
    R. Chan
    General Relativity and Gravitation, 2013, 45 : 243 - 261
  • [25] First Integrals of Shear-Free Fluids and Complexity
    Gumede, Sfundo C.
    Govinder, Keshlan S.
    Maharaj, Sunil D.
    ENTROPY, 2021, 23 (11)
  • [26] Shear-free gravitational waves in an anisotropic universe
    Hogan, PA
    O'Shea, EM
    PHYSICAL REVIEW D, 2002, 66 (12)
  • [27] Collapsing shear-free radiating fluid spheres
    Tewari, B. C.
    GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (08) : 1547 - 1558
  • [28] Shear-free axially symmetric dissipative fluids
    Herrera, L.
    Di Prisco, A.
    Ospino, J.
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [29] Shear-free and cavity models with plane symmetry
    M. Sharif
    M. Zaeem Ul Haq Bhatti
    Astrophysics and Space Science, 2014, 352 : 883 - 891
  • [30] Collapsing shear-free radiating fluid spheres
    B. C. Tewari
    General Relativity and Gravitation, 2013, 45 : 1547 - 1558