Shear-free rotating inflation

被引:13
|
作者
Obukhov, YN
Chrobok, T
Scherfner, M
机构
[1] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[2] Tech Univ Berlin, FB Math, D-10623 Berlin, Germany
来源
PHYSICAL REVIEW D | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevD.66.043518
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We demonstrate the existence of shear-free cosmological models with rotation and expansion which support inflationary scenarios. The corresponding metrics belong to the family of spatially homogeneous models with the geometry of the closed universe (Bianchi type IX). We show that the global vorticity does not prevent inflation and can even accelerate it.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] SHEAR-FREE GRAVITATIONAL RADIATION
    DERRY, L
    ISAACSON, R
    WINICOUR, J
    [J]. PHYSICAL REVIEW, 1969, 185 (05): : 1647 - +
  • [2] SHEAR-FREE GRAVITATIONAL COLLAPSE
    GLASS, EN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (07) : 1508 - 1513
  • [3] On the stability of the shear-free condition
    Herrera, L.
    Di Prisco, A.
    Ospino, J.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (07) : 1585 - 1599
  • [4] SHEAR-FREE ANISOTROPIC COSMOLOGICAL MODELS
    MIMOSO, JP
    CRAWFORD, P
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (02) : 315 - 326
  • [5] Two fluid shear-free composites
    Krisch, J. P.
    Glass, E. N.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [6] A SHEAR-FREE TURBULENT BOUNDARY LAYER
    UZKAN, T
    REYNOLDS, WC
    [J]. JOURNAL OF FLUID MECHANICS, 1967, 28 : 803 - &
  • [7] Relativistic shear-free fluids with symmetry
    S. Moopanar
    S. D. Maharaj
    [J]. Journal of Engineering Mathematics, 2013, 82 : 125 - 131
  • [8] SHEAR-FREE NORMAL COSMOLOGICAL MODELS
    KRASINSKI, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (02) : 433 - 441
  • [9] Shear-free turbulence near a wall
    Aronson, D
    Johansson, AV
    Lofdahl, L
    [J]. JOURNAL OF FLUID MECHANICS, 1997, 338 : 363 - 385
  • [10] Relativistic shear-free fluids with symmetry
    Moopanar, S.
    Maharaj, S. D.
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 125 - 131