An Optimal Bivariate Polynomial Interpolation Basis for the Application of the Evaluation-Interpolation Technique

被引:0
|
作者
Varsamis, Dimitris [1 ]
Karampetakis, Nicholas [2 ]
Mastorocostas, Paris [1 ]
机构
[1] Technol Educ Inst Serres, Dept Informat & Commun, Serres 62124, Greece
[2] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
来源
关键词
bivariate polynomial; Newton interpolation; determinant; interpolation points; COMPUTATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new basis of interpolation points for the special case of the Newton two variable polynomial interpolation problem is proposed. This basis is implemented when the upper bound of the total degree and the degree in each variable is known. It is shown that this new basis under certain conditions (that depends on the degrees of the interpolation polynomial), coincides either with the known triangular/rectangular basis or it is a polygonal basis. In all cases it uses the least interpolation points with further consequences to the complexity of the algorithms that we use.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 50 条
  • [41] Application of Polynomial Interpolation in the Chinese Remainder Problem
    Tianxiao HE
    Scott MACDONALD
    Peter J.-S.SHIUE
    JournalofMathematicalResearchwithApplications, 2017, 37 (01) : 90 - 96
  • [42] Structured matrices in the application of bivariate interpolation to curve implicitization
    Marco, Ana
    Martinez, Jose-Javier
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 73 (06) : 378 - 385
  • [43] APPLICATION OF POLYNOMIAL TENSOR INTERPOLATION FOR TECHNICAL TESTS
    Ciekot, Anita
    Biernat, Grzegorz
    Fraczek, Tadeusz
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2021, 20 (01) : 17 - 24
  • [44] Application of modified Leja sequences to polynomial interpolation
    Bos, L. P.
    Caliari, M.
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2015, 8 : 66 - 74
  • [45] The optimal particle-mesh interpolation basis
    Wang, Han
    Fang, Jun
    Gao, Xingyu
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (12):
  • [46] A New Formula for Bivariate Hermite Interpolation on Variable Step Grids and Its Application to Image Interpolation
    Delibasis, Konstantinos K.
    Kechriniotis, Aristides
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (07) : 2892 - 2904
  • [47] APPROXIMATING OPTIMAL POINT CONFIGURATIONS FOR MULTIVARIATE POLYNOMIAL INTERPOLATION
    Van Barel, Marc
    Humet, Matthias
    Sorber, Laurent
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 42 : 41 - 63
  • [48] Polynomial Evaluation and Interpolation and Transformations of Matrix Structures
    Pan, Victor Y.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2013, 2013, 8136 : 273 - 287
  • [49] Lower bounds for polynomial evaluation and interpolation problems
    Shoup, V
    Smolensky, R
    COMPUTATIONAL COMPLEXITY, 1997, 6 (04) : 301 - 311
  • [50] Near-Optimal Polynomial Interpolation on Spherical Triangles
    A. Sommariva
    M. Vianello
    Mediterranean Journal of Mathematics, 2022, 19