The optimal particle-mesh interpolation basis

被引:5
|
作者
Wang, Han [1 ,2 ]
Fang, Jun [1 ,2 ]
Gao, Xingyu [1 ,2 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, Fenghao East Rd 2, Beijing 100094, Peoples R China
[2] CAEP Software Ctr High Performance Numer Simulat, Huayuan Rd 6, Beijing 100088, Peoples R China
[3] Lab Computat Phys, Huayuan Rd 6, Beijing 100088, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 147卷 / 12期
基金
美国国家科学基金会;
关键词
PERIODIC BOUNDARY-CONDITIONS; EWALD METHOD; ELECTROSTATIC SYSTEMS; MOLECULAR-DYNAMICS; LIQUID WATER; SUMS; SIMULATION; TOOLKIT;
D O I
10.1063/1.4994857
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fast Ewald methods are widely used to compute the point-charge electrostatic interactions in molecular simulations. The key step that introduces errors in the computation is the particle-mesh interpolation. In this work, the optimal interpolation basis is derived by minimizing the estimated error of the fast Ewald method. The basis can be either general or model specific, depending on whether or not the charge correlation has been taken into account. By using the TIP3P water as an example system, we demonstrate that the general optimal basis is always more accurate than the B-spline basis in the investigated parameter range, while the computational cost is at most 5% more expensive. In some cases, the optimal basis is found to be two orders of magnitude more accurate. The model specific optimal basis further improves the accuracy of the general optimal basis, but requires more computational effort in the optimization, and may not be transferable to systems with different charge correlations. Therefore, the choice between the general and model specific optimal bases is a trade-off between the generality and the accuracy. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Kaiser-Bessel basis for particle-mesh interpolation
    Gao, Xingyu
    Fang, Jun
    Wang, Han
    [J]. PHYSICAL REVIEW E, 2017, 95 (06)
  • [2] OPTIMAL PARTICLE-MESH ALGORITHMS
    EASTWOOD, JW
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 18 (01) : 1 - 20
  • [3] Immersed interface interpolation schemes for particle-mesh methods
    Marichal, Yves
    Chatelain, Philippe
    Winckelmans, Gregoire
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 326 : 947 - 972
  • [4] Particle-mesh techniques on the MasPar
    MacNeice, P
    Mobarry, C
    Olson, K
    [J]. FRONTIERS '96 - THE SIXTH SYMPOSIUM ON FRONTIERS OF MASSIVELY PARALLEL COMPUTING, PROCEEDINGS, 1996, : 154 - 161
  • [5] THE VIRTUAL PARTICLE ELECTROMAGNETIC PARTICLE-MESH METHOD
    EASTWOOD, JW
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1991, 64 (02) : 252 - 266
  • [6] Particle-mesh simulations of the Lyα forest
    Meiksin, A
    White, M
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 324 (01) : 141 - 148
  • [7] A portable OpenCL implementation of generic particle-mesh and mesh-particle interpolation in 2D and 3D
    Bueyuekkececi, Ferit
    Awile, Omar
    Sbalzarini, Ivo F.
    [J]. PARALLEL COMPUTING, 2013, 39 (02) : 94 - 111
  • [8] PARTICLE-MESH METHODS ON THE CONNECTION MACHINE
    FERRELL, R
    BERTSCHINGER, E
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1994, 5 (06): : 933 - 956
  • [9] PARTICLE-MESH SIMULATIONS OF CLUSTERING IN COSMOLOGY
    BOUCHET, FR
    KANDRUP, HE
    [J]. ASTROPHYSICAL JOURNAL, 1985, 299 (01): : 1 - 4
  • [10] Efficient Particle-Mesh Spreading on GPUs
    Guo, Xiangyu
    Liu, Xing
    Xu, Peng
    Du, Zhihui
    Chow, Edmond
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 120 - 129