Nanoscale cellular imaging with scanning angle interference microscopy

被引:4
|
作者
DuFort, Christopher [1 ,2 ]
Paszek, Matthew [3 ,4 ]
机构
[1] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94115 USA
[2] Univ Calif San Francisco, Dept Orthopaed Surg, San Francisco, CA USA
[3] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY USA
[4] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY USA
来源
关键词
CONTRAST MICROSCOPY; RESOLUTION LIMIT; OXIDIZED SILICON; FLUORESCENCE; ILLUMINATION; CYTOSKELETON; DEPLETION; PROTEINS; GREEN;
D O I
10.1016/B978-0-12-420138-5.00013-6
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 mu m) the sample substrate.
引用
收藏
页码:235 / 252
页数:18
相关论文
共 50 条
  • [31] Nanoscale thermometry by scanning thermal microscopy
    Menges, Fabian
    Riel, Heike
    Stemmer, Andreas
    Gotsmann, Bernd
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (07):
  • [32] Nanoscale terahertz scanning probe microscopy
    Cocker, T. L.
    Jelic, V.
    Hillenbrand, R.
    Hegmann, F. A.
    NATURE PHOTONICS, 2021, 15 (08) : 558 - 569
  • [33] Nanoscale terahertz scanning probe microscopy
    T. L. Cocker
    V. Jelic
    R. Hillenbrand
    F. A. Hegmann
    Nature Photonics, 2021, 15 : 558 - 569
  • [34] Imaging of cellular activity of single cultured cells by scanning electrochemical microscopy
    Yasukawa, T
    Kondo, Y
    Uchida, I
    Matsue, T
    CHEMISTRY LETTERS, 1998, (08) : 767 - 768
  • [35] Illumination-angle-scanning digital interference holography for optical section imaging
    Jeong, Seung Jun
    Hong, Chung Ki
    OPTICS LETTERS, 2008, 33 (20) : 2392 - 2394
  • [36] Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit
    Lehmann, Peter
    Xie, Weichang
    Allendorf, Benedikt
    Tereschenko, Stanislav
    OPTICS EXPRESS, 2018, 26 (06): : 7376 - 7389
  • [37] Nanoscale imaging of biological toxin-lipid bilayer interactions by scanning probe microscopy
    Slade, A
    Sasaki, D
    Waggoner, T
    Burns, A
    Yip, CM
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 383A - 383A
  • [38] Nanoscale Imaging of Collagen Gels with Focused Ion Beam Milling and Scanning Electron Microscopy
    Reese, Shawn P.
    Farhang, Niloofar
    Poulson, Randy
    Parkman, Gennie
    Weiss, Jeffrey A.
    BIOPHYSICAL JOURNAL, 2016, 111 (08) : 1797 - 1804
  • [39] Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy
    de Smit, Emiel
    Swart, Ingmar
    Creemer, J. Fredrik
    Hoveling, Gerard H.
    Gilles, Mary K.
    Tyliszczak, Tolek
    Kooyman, Patricia J.
    Zandbergen, Henny W.
    Morin, Cynthia
    Weckhuysen, Bert M.
    de Groot, Frank M. F.
    NATURE, 2008, 456 (7219) : 222 - U39
  • [40] Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy
    Emiel de Smit
    Ingmar Swart
    J. Fredrik Creemer
    Gerard H. Hoveling
    Mary K. Gilles
    Tolek Tyliszczak
    Patricia J. Kooyman
    Henny W. Zandbergen
    Cynthia Morin
    Bert M. Weckhuysen
    Frank M. F. de Groot
    Nature, 2008, 456 : 222 - 225